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The BICEP2 Collaboration reports a detection of primordial cosmic microwave background (CMB) B
mode with a tensor-to-scalar ratio r ¼ 0.20þ0.07

−0.05 (68% C.L.). However, this result disagrees with the recent
Planck limit r < 0.11 (95% C.L.) on constraining inflation models. In this Letter we consider an
inflationary cosmology with a preceding nonsingular bounce, which gives rise to observable signatures on
primordial perturbations. One interesting phenomenon is that both the primordial scalar and tensor modes
can have a step feature on their power spectra, which nicely cancels the tensor excess power on the CMB
temperature power spectrum. By performing a global analysis, we obtain the 68% C.L. constraints on
the parameters of the model from the PlanckþWP and BICEP2 data together: the jump scale
log10ðkB=Mpc−1Þ ¼ −2.4� 0.2 and the spectrum amplitude ratio of bounce to inflation
rB ≡ Pm=As ¼ 0.71� 0.09. Our result reveals that the bounce inflation scenario can simultaneously
explain the Planck and BICEP2 observations better than the standard cold dark matter model with a
cosmological constant, and can be verified by future CMB polarization measurements.
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Introduction.—Recently, the BICEP2 Collaboration
announced the detection of primordial B-mode polarization
on the cosmic microwave background (CMB). This signifi-
cant measurement implies that, if all the B-mode polarization
signals are contributed by primordial gravitational waves, the
corresponding tensor-to-scalar ratio is constrained as [1]

r ¼ 0.2þ0.07
−0.05ð68%C:L:Þ: ð1Þ

This profound discovery has a series of significant impli-
cations on very early Universe models [2–6]. However, this
result disagrees with the recent Planck limit r < 0.11
(95% C.L.) on standard inflation models since the excess
power in the CMB temperature power spectrum was not
observed by the Planck experiment [7].
In order to lessen the pressure on inflation models and

the disagreement with the Planck data, we consider an
important extension of inflationary cosmology, which may
introduce a nonsingular bounce to connect a contracting
phase of the Universe with the inflationary stage. It is well
known that the big bang singularity issue can be avoided in
the framework of bouncing cosmologies [8,9]. The sce-
nario of bounce inflation has been applied to suppress
CMB anisotropies on large angular scales [10]. By virtue of
the effective field description, it can be achieved by matter
fields with the null energy condition violation, such as the
quintom bounce [11,12], in which an explicit matter-bounce
inflation scenario was obtained with the inflationary epoch
being preceded by a contracting phase dominated by the

pressureless dust matter. This scenario was also realized in
the frame of loop quantum cosmology (namely. see Ref. [13]
and references therein).
In this Letter, we aim at searching for key observational

signals for the bounce inflation scenario, which are
expected to be sensitive to cosmological CMB measure-
ments. Specifically, we perform an estimate on the power
spectrum of primordial gravitational waves generated in
the matter-bounce inflation scenario and find that its
amplitude undergoes a jump feature at a critical length
scale. A similar property was also found in the power
spectrum of the primordial curvature perturbation as
pointed out in Ref. [14]. Using the Planck and BICEP2
data, we perform a global analysis on this bounce inflation
scenario and find that it can better interpret the recent CMB
observations when compared with the cold dark matter
model with a cosmological constant (ΛCDM model).
Formalism.—We begin with a brief discussion of primor-

dialperturbationsin theframeofaflatFriedmann-Robertson-
Walker universe. The relic gravitational waves generated in
the very early Universe are a basic prediction in modern
cosmology [15,16]. A standard process of generating the
primordial power spectrum suggests that metric fluctuations
initially emerge inside a Hubble radius, then leave it in a
primordial epoch, and finally reenter at late times [17]. The
dynamics of primordial gravitational waves is conveniently
investigated by tracking a Fourier mode vk along the cosmic
evolution. In the context of general relativity, the correspond-
ing equation of motion in the Fourier space is given by
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vk00 þ
�
k2 −

a00

a

�
vk ¼ 0; ð2Þ

wherea is thescalefactoroftheUniverseandtheprimedenotes
the derivative with respect to the comoving time η≡ R

dt=a.
Specifically, the scale factor often scales as aðtÞ ¼
aBðt=tBÞ1=ϵ, where the subscript “B” denotes any reference
time, which will be referred as the bouncing point later.
Note that ϵ≡ − _H=H2 is physically associated with the
background dynamics; namely, it represents the slow roll
parameter during inflation and equals 3ð1þ wÞ=2 for other
cosmic evolutions with w being the regular equation-of-state
parameter. Using the comoving time, one derives aðηÞ ¼
aBðη=ηBÞ1=ðϵ−1Þ for a constant ϵ and, hence, the comoving
Hubblerate isgivenbyH≡ a0=a ¼ 1=ðϵ − 1Þη.For instance,
for inflationwithϵ ≪ 1 there is jHj≃ j1=ηj; for apressureless
matter dominated phasewithw ¼ 0 (and thus ϵ ¼ 3=2), then
jHj≃ j2=ηj. Moreover, there is a″=a¼ðν2−1=4Þ=
η2, with ν ¼ �ðϵ − 3Þ=ð2ϵ − 2Þ.
We assume that cosmological perturbations originate

from vacuum fluctuations, which suggests vik≃
exp ð−i R η kd~ηÞ= ffiffiffiffiffi

2k
p

, when jkηj ≫ 1. This is consistent
with the asymptotic solution to Eq. (2) when the last term
a″=a is negligible. Another asymptotic solution to
Eq. (2) can be derived in terms of the Bessel function,
vk ∼ η1=2½cðkÞη−jνj�, at super-Hubble scales with jkηj ≪ 1.
Now we match these two asymptotic solutions at the
moment of Hubble crossing jkηj ∼ 1, and then obtain the
tensor mode on super-Hubble scales as

vkðηÞ≃ 1ffiffiffiffiffi
2k

p ðkηÞð1=2Þ−jνj: ð3Þ

From the definition of the power spectrum PT≡
ð4k3=π2Þjðvk=aÞj2, one easily learns that the scale invari-
ance requires jνj ¼ 3=2, which has to be achieved in
a period of matter contraction [18,19] or by inflation.
However, the comoving Hubble rate evolves as jHj≃ j2=ηj
during matter contraction while it takes another form
jHj≃ j1=ηj during inflation. As a result, if there is a
matter contraction before inflation, the amplitude of the
power spectrum for primordial gravitational waves would
undergo a jump around the scale kB comparable to the
bounce scale. A detailed calculation reveals that PT ¼
H2=2π2 when k < kB while PT ¼ 2H2=π2 when k ≥ kB for
the model of matter-bounce inflation.
In analogy with the method developed in Ref. [14], we

phenomenologically parametrize the power spectrum for
primordial tensor perturbations as follows:

PT ¼ Pm
T þ Pi

T − Pm
T

2

�
1þ tanh

�
TBlog10

�
k
kB

���
; ð4Þ

with Pm
T ≡H2=2π2 and Pi

T ≡ 2H2=π2 being introduced. In
addition, the power spectrum of the primordial curvature
perturbation can be parametrized as

Pζ ¼ Pm þ Pζ;i − Pm

2

�
1þ tanh

�
TBlog10

�
k
kB

���
: ð5Þ

In particular, Pζ;i ¼ H2=8π2ϵ is the power spectrum during
inflation and Pm is the spectrum before the bounce, which
is required to be less than Pζ;i.
As usual, the power spectrum during inflation can be

parametrized as Pζ;i ¼ Askns−1, in which As and ns are the
amplitude and the spectral index correspondingly. Since
primordial density fluctuations rely on the model param-
eters during the bounce, the amplitude of its power
spectrum before the bounce can be any arbitrary value
lower than that during inflation [20,21]. [The equation of
motion for primordial density perturbations is similar to
Eq. (2) except that the scale factor a is replaced by another
background parameter, which relies on the specific bounce
mechanism, and, hence, we consider the spectrum ampli-
tude of density perturbations generated before the bounce
to be free.] Therefore, the observational constraint
on primordial density perturbations is pretty loose [14].
Similar to the analysis of primordial gravitational waves,
one can introduce a bounce-to-inflation ratio of the power
spectrum, rB ≡ Pm=As, to characterize the spectrum
obtained before the bounce. However, for primordial tensor
fluctuations, their dynamics only depend on the evolution
of the scale factor and, hence, once we have determined the
background evolution, the power spectrum of the primordial
gravitational waves can be fixed.Moreover, the parameter kB
denotes the occurrence scale of the jump feature in the power
spectrum (in unit of Mpc−1), and TB depicts the slope of
this jump and thus is associated with the bounce duration.
Apparently, these three parameters are highly correlated. We
try to constrain them simultaneously, but the results are not
good enough, especially when using the Planck data alone.
Therefore, in our numerical calculations we fix TB ¼ 5,
which is the best fit value we obtain from the Planckþ
WPþ BICEP2 data, and constrain the other two parameters.
Results.—We perform a global fitting using the

COSMOMC package [22], a Markov Chain Monte Carlo
code, which has been modified to calculate the theoretical
CMB power spectra in the bounce inflation scenario. We
assume adiabatic initial conditions and a flat universe. We
vary the following cosmological parameters (Ωbh2, Ωch2,
τ, Θs, ns, As, r), where Ωbh2 and Ωch2 are the baryon
and cold dark matter densities, τ is the optical depth to
reionization,Θs is the ratio (multiplied by 100) of the sound
horizon at decoupling to the angular diameter distance to
the last scattering surface, ns is the spectral index, r is the
tensor-to-scalar ratio of the power spectrum, and As is the
primordial amplitude at the pivot scale k0 ¼ 0.05 Mpc−1.
Furthermore, we have two more parameters kB and rB,
which are related to the bounce model.
In particular, we use the low-l and high-l CMB

temperature power spectrum data from the Planck with
the low-l WMAP9 polarization data (PlanckþWP). We
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marginalize over the nuisance parameters that model the
unresolved foregrounds with wide priors. For the BICEP2
data, we use their B-modes (BB) power spectrum in our
analyses.
In Table I we list the minimal χ2 values for different

cosmological models from different data combinations. In
the ΛCDM model, the model with r ¼ 0 is consistent with
the Planck temperature (TT) power spectrum,
χ2ðPÞ ¼ 9805.7, but is strongly ruled out by the
BICEP2 data, χ2ðBÞ ¼ 56.0. When including tensor fluc-
tuations in the calculation, the χ2 value of the best fit model
from the BICEP2 data significantly decreases to
χ2ðBÞ ¼ 9.0. The BICEP2 data strongly favor a nonzero
amplitude of the primordial tensor power spectrum;
namely, the 68% C.L. limit is r ¼ 0.162� 0.034. This
result is consistent with that from the BICEP2 collaboration
[1]. However, the nonzero r model will bring the extra
power on the CMB low-l temperature power spectrum,
which leads to the worse fit to the Planck data, especially to
the low-l data, as shown in the left panel of Fig. 1.
Therefore, the standard ΛCDM model cannot simultane-
ously fit the Planck and BICEP2 data very well, due to the
excess power on the CMB TT spectrum at large scales.
Next, we consider the bounce inflation model.

We use the PlanckþWP data alone to constrain the
parameters kB and rB. We find the best fit values of

log10ðkB=Mpc−1Þ ¼ −2.6 and rB ¼ 0.8 with the minimal
χ2ðPÞ ¼ 9804.3, which means the bounce model can only
slightly improve the fit to the Planck data with Δχ2 ∼ −1.4.
This result is slightly worse than some other works
[23–25], due to our moderate suppression in the bounce
model, which is shown in the left panel of Fig. 1. In Fig. 2,
we show the one-dimensional distributions on bounce
parameters kb and rB, and obtain the 95% limits
log10ðkB=Mpc−1Þ < −2.1 and 0 < rB < 1. The bounce
model with no suppression is still consistent with the
PlanckþWP data. Again, similar to the ΛCDM model,
this bounce inflation model with r ¼ 0 cannot fit the
BICEP2 data as well, χ2ðBÞ ¼ 53.7. Afterwards, we
include the BICEP2 data and the tensor fluctuations in
the analyses. Although in the bounce inflation, the theo-
retical CMB primordial BB power spectrum is suppressed
at large scales, as shown in the right panel of Fig. 1, the
BICEP2 experiment can only measure the BB power
spectrum at scales l > 30, where the suppression effect
is very small. Therefore, the median value of the tensor to
scalar ratio r in the bounce inflation model is similar to that
obtained in the standard ΛCDM model, r ¼ 0.183� 0.072
at 95% confidence level, as shown in Fig. 2. Meanwhile, we
find that the suppression effect is obvious at very large
scales l < 20. We expect that the Planck team will soon
release the CMB polarization data, which may cover the
BB power spectrum at these scales. Therefore, it should be
very promising to examine the bounce inflation scenario in
the near future.
More importantly, adding the BICEP2 data significantly

improves the constraints on parameters of the bounce
inflation. The 68% C.L. constraints are log10ðkB=Mpc−1Þ ¼
−2.4� 0.2 and rB ¼ 0.71� 0.09, while the 95% limits are
−2.8 < log10ðkB=Mpc−1Þ < −2.1 and 0.54 < rB < 0.88.
In Fig. 2 we show the two-dimensional contours between
kB, rB, and r. Since we have two free parameters to describe
the suppression effect of the bounce model, when kb is
increasing, the other parameter rB also becomes larger in

TABLE I. The χ2 values for different best fit models from
different data combinations. χ2 (P, low l) is for the Planck low-l
TT spectrum only, χ2 (P) is for the PlanckþWP data, and χ2ðBÞ
is for the BICEP2 BB spectrum.

Model χ2 (P, low l) χ2 (P) χ2 (B)

ΛCDM, r ¼ 0 −6.7 9805.7 56.0
ΛCDM, r ¼ 0.162 0.7 9814.3 9.0
Bounce, r ¼ 0 −10.9 9804.3 53.7
Bounce, r ¼ 0.183 −9.2 9805.6 7.0

FIG. 1 (color online). Theoretical CMB power spectra for the best fit ΛCDM models and bounce inflation models, as well as the
Planck and BICEP2 observational data. Left: the CMB temperature power spectra for four best fit models—ΛCDM models and bounce
inflation models with and without using the BICEP2 data. Right: the CMB BB power spectra for the best fit ΛCDM and bounce inflation
models when using the BICEP2 data. The black solid line denotes the best fit bounce inflation models without the step feature.
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order to compensate this effect. Therefore, the correlation of
rB with kB is positive. On the other hand, the model with a
nonzero r brings the extra CMB TT power spectrum, which
allows a large suppression, corresponding to an increasing
kB. So we find that there is a tiny positive correlation between
kB and r.
Additionally, the χ2 values for the best fit model from the

PlanckþWP and BICEP2 data are χ2ðPÞ ¼ 9805.6 and
χ2ðBÞ ¼ 7.0, respectively. The bounce inflation with
r ¼ 0.183 can fit the BICEP2 data well, while it can also
explain the PlanckþWP data with the similar χ2 value,
especially for the Planck low-l TT data (see Table I). The
reason is that the extra CMB TT power spectrum at large
scales, due to the nonzero tensor fluctuations, can be
canceled by the suppression effect brought by the bounce,
which is significantly different from the standard ΛCDM
case. Based on these results, we conclude that when using
the Planck data alone, the bounce model can only slightly
improve the fit to the data, comparing with the ΛCDM
model. However, after including the BICEP2 data, the
minimal χ2 becomes smaller in the bounce inflation
model than that obtained in the standard ΛCDM case,
Δχ2min ≃ −12, corresponding to an ∼3.5σ confidence
level. Based on the Akaike information criterion (AIC)
AIC≡ −2 lnLmax þ 2k, where Lmax is the maximum
likelihood achievable by the model and k is the number
of parameters of the model [26], we obtain the difference
on the AIC between the standard inflation model and
the bounce inflation model, ΔAIC≡ AICðstandardÞ−
AICðbounceÞ≃ −8. The bounce inflation model with
two more parameters is strongly favored by the data and
can very well fit to the PlanckþWP and BICEP2 data
simultaneously.
Conclusions.—Since a nonsingular bounce is expected

to occur at an extremely high energy scale in the very

early Universe, it is hard to detect directly by experiments.
To search for a bounce, the associated observational
consequences are significant in cosmological surveys. In
the present Letter, we study the evolution of primordial
gravitational waves in a combined scenario of matter
bounce and inflation. We interestingly discover a novel
jump feature on the power spectrum of these tensor modes
at large scales, which could be verified by the Planck
polarization data in the near future. The same feature was
found to exist in the spectrum of primordial density
perturbations. Importantly, this jump feature on the pri-
mordial scalar and tensor spectrum could alleviate prob-
lems of the excess power in the CMB temperature power
spectrum.
Recently, the BICEP2 Collaboration reported a 7σ

detection of the nonzero tensor-to-scalar ratio, which
corresponds to too large a power in the CMB TT power
spectrum to fit in the standard ΛCDM framework. When
we consider the bounce inflation model, the suppression
effect could partially cancel those excess power at large
scales. We perform a global analysis to constrain the jump
features of both the scalar and tensor fluctuations from the
PlanckþWP and BICEP2 data. Our results reveal that the
CMB data favor the bounce inflation model at about a 3.5σ
confidence level, namely log10ðkB=Mpc−1Þ ¼ −2.4� 0.2
(68% C.L.) and rB ¼ 0.71� 0.09 (68% C.L.), when using
the PlanckþWP and BICEP2 data together. The bounce
inflation model can simultaneously explain the Planck and
BICEP2 data very well.
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