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The most general action for a scalar field coupled to gravity that leads to second-order field equations
for both the metric and the scalar—Horndeski’s theory—is considered, with the extra assumption that the
scalar satisfies shift symmetry. We show that in such theories, the scalar field is forced to have a nontrivial
configuration in black hole spacetimes, unless one carefully tunes away a linear coupling with the Gauss-
Bonnet invariant. Hence, black holes for generic theories in this class will have hair. This contradicts a
recent no-hair theorem which seems to have overlooked the presence of this coupling.
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In general relativity, black hole spacetimes are described
by the Kerr metric, so long as they are stationary, asymp-
totically flat, and devoid of any matter in their surroundings
[1]. Stationarity is a reasonable assumption for black holes
that are thought to be quiescent as end points of gravitational
collapse. Astrophysical black holes are certainly not asymp-
totically flat, but one can invoke separation of scales in order
to argue that the cosmological background should not
seriously affect local physics and hence the structure of
black holes. Finally, black holes can also carry an electro-
magnetic charge in the presence of an electromagnetic field.
It has been conjectured that they cannot carry any other
charges, which are colloquially referred to as hair [2,3]. The
no-hair conjecture was inspired by the uniqueness theorems
for black hole solutions in general relativity [5–8].
Hawking has proven that black holes cannot carry scalar

charge, provided that the scalar couples to the metric
minimally or as described by Brans-Dicke theory [9].
This result has been generalized to standard scalar-tensor
theories [10] (see also earlier work by Bekenstein with the
extra assumption of spherical symmetry [11,12]).
All of these proofs actually demonstrate that the scalar

has to be constant in a black hole spacetime, which is a
stronger statement. Indeed, in principle, the scalar could
have a nontrivial configuration without the black hole
carrying an extra (independent) charge. This is sometime
referred to as “hair of the second kind.” The distinction is
important if one is interested in the number of parameters
that fully characterize the spacetime. But, a nontrivial
configuration of the scalar is usually enough to imply that
the black hole spacetime will not be a solution to Einstein’s
equations in vacuum, and hence it differs from the black
holes of general relativity.
The known proofs do not apply to theories with more

general coupling between the metric and the scalar or
derivative self-interactions of the scalar. Hence, they do
not cover the most general scalar-tensor theory that leads to

second-order field equations, known as Horndeski theory
[13]. Restricting attention to theories with second-order field
equations is justified, as higher-order derivative models are
generically plagued by the Ostrogradski instability [14].
Models that belong to this class have lately received a lot
of attention in cosmology, under the name generalized
Galileons [15] (see also Ref. [16] for a recent review).
If blackholeshavehair in these theories, they couldperhaps

be used to indirectly detect the presence of a scalar field. The
equivalence principle dictates that the matter should couple
minimally to the metric and that it should not couple to the
scalar field. This implies that direct detection in matter
experiments is not promising. However, a nontrivial configu-
ration for the scalar field would lead to a black hole solution
that deviates from that of general relativity. The deviation
could agree with the prediction of a certain model, and, in
principle,accuratemodelingof thespacetimecouldactaprobe
of the coupling of the scalar field to gravity and itself. The
presence of scalar hair can also have bearing on the thermo-
dynamical aspects of black holes in scalar-tensor theories.
It is, hence, quite important to understandwhether black holes
can have nontrivial scalar configurations in the most general
scalar-tensor theory.
Progress in this directionwas recentlymade inRef. [17]. It

was argued there that vacuum, static, spherically symmetric,
asymptotically flat black holes have no hair in the most
general scalar-tensor theory that leads to second-order field
equations, provided that the scalar exhibits shift symmetry,
i.e., symmetry under ϕ → ϕþ const. The most general
Lagrangian with these properties is the following [18]:

L ¼ KðXÞ −G3ðXÞ□ϕþG4ðXÞR
þG4X½ð□ϕÞ2 − ð∇μ∇νϕÞ2�

þG5ðXÞGμν∇μ∇νϕ −
G5X

6
½ð□ϕÞ3

− 3ð□ϕÞð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3�; ð1Þ
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where K, G3, G4, and G5 are generic functions of X≔
−∂μϕ∂μϕ=2,GiX ≡ ∂Gi=∂X,∇μ is the covariant derivative
associated with the metric gμν, □≡∇μ∇μ, ð∇μ∇νϕÞ2≡∇μ∇νϕ∇ν∇μϕ, ð∇μ∇νϕÞ3 ≡∇μ∇ρϕ∇ρ∇νϕ∇ν∇μϕ, and R
and Gμν are the corresponding Ricci scalar and Einstein
tensor, respectively. The class of scalar-tensor theories in
which the scalar enjoys shift symmetry is an interesting one,
as the scalar is protected from acquiring a mass by radiative
corrections.
In what follows, we will briefly review the no-hair proof

of Ref. [17] and we will show that it can be straightfor-
wardly extended to slowly rotating black holes. However,
we will also scrutinize its assumptions and we will uncover
a hidden assumption that is not generically satisfied by the
Lagrangian in Eq. (1), unless one fine-tunes away a certain
combination of terms. In fact, generic theories of this type
have hairy black hole solutions.
The equation of motion of the scalar in a theory

described by Eq. (1) can be written as a conservation
equation for the Noether current Jμ associated with the shift
symmetry ϕ → ϕþ const

∇μJμ ¼ 0: ð2Þ

Assuming that the metric is static and spherically sym-
metric, one can make the ansatz

ds2 ¼ −fðρÞdt2 þ fðρÞ−1dρ2 þ r2ðρÞdΩ2 ð3Þ

without loss of generality. The exact form of Jμ will be
discussed shortly. The proof laid out in Ref. [17] can be
split into four steps. In the first step, one argues that,
if the scalar respects the symmetries of the metric, so that
ϕ ¼ ϕðρÞ, then the only nonvanishing component of Jμ in
this coordinate system should be Jρ. The angular compo-
nents have to vanish because of spherical symmetry, and
the Jt component has to vanish because otherwise it would
select a preferred time direction. The second step of the
proof is to show that Jρ has to vanish on the horizon of a
black hole. The Killing vector associated with time trans-
lations should become null at the horizon, and in this
coordinate system, its norm is equal to f. So, f should
vanish at the horizon. If JμJμ ¼ ðJρÞ2=f is to remain finite,
then Jρ must be 0 at the horizon. The third step involves
Eq. (2), which can now be trivially integrated to give
r2ðρÞJρ ¼const. But, r2 remains finite at the horizon as a
measure of the area of constant-ρ spheres. This implies that
Jρ has to vanish everywhere. The fourth and final step is to
argue that Jρ ¼ 0 implies ϕ ¼ const, and, therefore, the
metric will have to satisfy Einstein’s equations in vacuum
[assuming that G4ð0Þ ¼ 1].
This last step is the trickiest one, as it relies on the actual

dependence of the current on ϕ and its derivatives. It is
argued in Ref. [17] that Jρ should be of the form

Jρ ¼ f∂ρϕFð∂ρϕ; g; ∂ρg; ∂ρ∂ρgÞ; ð4Þ

where F is some unspecified function. It is then claimed
that F will asymptote to a nonzero constant at spatial
infinity if one imposes the minimal requirement that the
theory will have a standard canonical kinetic term in the
weak field regime. Asymptotic flatness requires f → 1 and
ϕ0 → 0 at infinity. But, if one then tries to go to some
smaller radius continuously, F and f should remain non-
zero, which implies that ϕ0 has to vanish everywhere.
It is this last step of the proof that we will contest and,

in particular, the functional dependence of Jμ on ϕ and its
derivatives. If the scalar respects the symmetries of the
metric, then ϕ ¼ ϕðrÞ. Adopting a more conventional
coordinate system with r as the areal radius, the metric
can take the form

ds2 ¼ −RðrÞdt2 þ SðrÞdρ2 þ r2ðdθ2 þ sin2θdφ2Þ: ð5Þ

Using this ansatz, one can get the explicit form of the
Noether current associated with shift symmetry:

Jr¼−
ϕ0

S
KXþ

rϕ02R0 þ4Rϕ02

2 rRS2
G3X

þ2Rϕ0−2RSϕ0 þ2rϕ0R0

r2RS2
G4X−

2Rϕ03þ2rϕ03R0

r2RS3
G4XX

þSϕ02R0−3ϕ02R0

2r2RS3
G5Xþ

ϕ04R0

2r2RS4
G5XX; ð6Þ

where a prime denotes differentiation with respect to r.
Every term does appear to depend at least linearly on ϕ0, as
required in Ref. [17]. Additionally, assuming that K has a
piece linear in X so that in the weak field limit the standard
canonical kinetic term is present in the action, the current
does seem to be asymptotically proportional to a constant
times ϕ0: As r → ∞, asymptotic flatness requires that R,
S → 1 and R0, S0 → 0, and the terms that contain Gi appear
to vanish. So, all of the requirements on Ref. [17] seem to
be justified.
One potential loophole could be to consider theories

whereGi or their derivatives with respect to X have poles at
X → 0, as X ¼ −ϕ02=2. However, such theories will not, in
general, admit solutions in which ϕ ¼ const everywhere, as
this would make the current diverge. As such, they do not
fall under the purview of the proof in the first place.
Moreover, in general, such theories would be unlikely to
admit Lorentz-symmetric vacua, as the scalar would always
be forced to be in a nontrivial configuration. There is an
exception, though: suppose that the Gi and their derivatives
are such, so that they contain exactly the right negative
powers of X in order for Jr to not have a pole at X ¼ 0 but
instead have a piece that is ϕ independent.
In order to show that this is possible, it is actually easier

to go back to the action. What we are requesting is that the
field equation of the scalar contains a term that does not
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depend on the scalar itself. The corresponding term in the
Lagrangian should then be linear in the scalar, i.e., of the
form ϕA½g� up to a total divergence, whereA½g� is a generally
covariant scalar constructed from the metric and its deriv-
atives. On the other hand, shift symmetry implies that A itself
should be a total divergence. We also want the termϕA in the
Lagrangian to lead to a contribution to the field equations
with nomore than second-order derivatives when varied with
respect to both the scalar and the metric. There is only one
choice that actually satisfies all requirements: A ¼ G≡
RμνλκRμνλκ − 4RμνRμν þ R2; i.e., ϕ has to have a linear
coupling with the Gauss-Bonnet invariant.
Indeed, consider the theory

S ¼ M2
p

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μϕ∂μϕþ αϕG

�
; ð7Þ

where α is a coupling constant and Mp is the reduced
Planck mass. Variation with respect to ϕ yields

□ϕþ αG ¼ ∇μð∇μϕþ αḠμÞ ¼ 0; ð8Þ
where Ḡμ is implicitly defined by G ¼ ∇μḠμ. G vanishes
only in flat space, which implies that ϕ cannot be constant
everywhere for any other spacetime, including black holes.
Although unlikely, it is not a priori inconceivable that black
hole solutions do not exist at all in this model. This is not
the case, and we will provide explicit black hole solutions
for this action elsewhere [18].
As a preview, we consider a perturbative treatment in the

dimensionless parameter ~α≡ α=l2, where l is the character-
istic length of the system in question, e.g., the radius of the
black hole horizon. Assuming ~α ≪ 1 (which is a reasonable
assumption unless one is considering microscopic black
holes), one could look for solutions that are perturbatively
close to the Schwarzschild solution. At zeroth order, the
scalar would then be constant. This implies that the ϕG term
will only start contributing to the field equations of the
metric at order Oð ~α2Þ. Hence, to Oð ~αÞ, the metric will be
Schwarzschild. For the scalar, instead, one can solve Eq. (8)
to Oð ~αÞ and obtain

ϕ0 ¼ α
16m2 − Cr3

r4ðr − 2mÞ ; ð9Þ

where m ¼ l=2 is the mass of a black hole and C is an
integration constant. For ϕ to be regular on the black hole
horizon, one must impose C ¼ 2=m. This yields

ϕ0 ¼ −
2α

m
ðr2 þ 2mrþ 4m2Þ

r4

¼ −
8~αm
r4

ðr2 þ 2mrþ 4m2Þ: ð10Þ

Two remarkable features of the solution are already present
at Oð ~αÞ: (i) Even though ϕ has a nontrivial profile, it does

not lead to an independent charge because of the regularity
condition on the horizon, so the solutions will have hair of
the “second kind.” (ii) For fixed α, the solution diverges as
m → 0. The expansion parameter is, in fact, ~α ∝ α=m2,
and, hence, nonperturbative effects will be important in this
regime. A more detailed analysis of these features and the
full perturbative and nonperturbative solutions will be
presented in Ref. [18].
The fact that the scalar field is obliged to have a

nontrivial configuration in black hole spacetimes consti-
tutes a counterexample to the statement that the most
general shift-symmetric scalar-tensor theory that leads to
second-order field equations cannot have hairy solutions.
Indeed, the theory [Eq. (7)] fits comfortably in the initial
Lagrangian given in Eq. (1). One simply has to choose
K ¼ M2

pX=2, G3 ¼ 0, G4 ¼ M2
p=2, and G5 ¼

−2M2
pα ln jXj [19]. It is straightforward to check that,

for these choices, the G5-related terms in Jr in Eq. (6)
become ϕ independent, without the current (or any other
equation of the theory) becoming divergent as ϕ → const.
It is crucial to point out that one does not need to restrict
oneself to that choice in order to have hairy black holes.
In fact, for any choice of K and Gi, one could write

G5 ¼ −2M2
pα ln jXj þ ~G5ðXÞ: ð11Þ

Additionally, the coupling between ϕ and G cannot be done
away with by going to another conformal frame, as is the
case for a coupling of the type ϕR. Only when α is tuned
to 0 would ϕ ¼ const solutions be admissible. In other
words, one could add to the action [Eq. (7)] virtually any
other term that is shift symmetric and leads to a second-
order contribution to the field equations, and the resulting
theory would evade the no-hair theorem of Ref. [17].
From a classical perspective, one can always choose to

set α ¼ 0. But, if one is thinking of these theories as
effective field theories, then one would need a symmetry
that would protect α from receiving radiative corrections.
For a real scalar, there are not many choices of internal
symmetries. Given that the corresponding term is odd in
copies of ϕ, one could invoke symmetry under ϕ → −ϕ.
This would, however, reduce the Lagrangian of Eq. (1), and
thus the applicable theory space of the no-hair theorem of
Ref. [17], significantly:

L ¼ KðXÞ þG4ðXÞRþG4X½ð□ϕÞ2 − ð∇μ∇νϕÞ2�: ð12Þ

One the other hand, it is straightforward to extend the
no-hair argument of Ref. [17] to slowly rotating solutions,
when it is valid in spherical symmetry. The most general
stationary, axially symmetric, slowly rotating solution can
take the form [20]

ds2 ¼ −RðrÞdt2 þ SðrÞdρ2 þ r2ðdθ2 þ sin2θdφ2Þ
þ ϵr2sin2θΩðr; θÞdtdφþOðϵ2Þ; ð13Þ
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where RðrÞ and SðrÞ correspond to the spherically sym-
metric solution, Ωðr; θÞ is a function to be determined, and
ϵ is the bookkeeping parameter for the slow rotation. The
key argument for arriving at this metric is that the system
should be invariant under reversal of the direction of
rotation together with either t → −t or φ → −φ.
Let us now apply the same requirement to the scalar field

ϕ. Assuming it respects the symmetries of the metric in our
coordinate system, the scalar field will not depend on t or φ
to all orders, i.e., ϕ ¼ ϕðr; θÞ. But then, the scalar cannot
receive a correction which is linear in the rotation, as the
linear correction would not be invariant under the com-
bined operation mentioned above. Given that ϕ ¼ const in
the spherical case, we will then have ϕ ¼ constþOðϵ2Þ in
the slowly rotating case. The metric will then satisfy
Einstein’s equation to the same order. Therefore, slowly
rotating black holes cannot have scalar hair. This extension
to the proof of Ref. [17] is valid when a perturbative
treatment in the rotation is applicable. It is a stronger result,
in the sense that it demonstrates that moderate rotation
cannot endow the black hole with scalar hair. Additionally,
this simple argument applies to virtually any gravity theory
with scalar fields, as long as the spherically symmetric
solutions have constant profiles for the scalars.
In summary, we have shown that in generalized scalar-

tensor theories that are shift symmetric and lead to second-
order equations, the scalar field will have a nontrivial
configuration in any spacetime other than flat, unless the
linear coupling between the scalar and the Gauss-Bonnet
invariant is suppressed. In the absence of a symmetry
justifying such suppression, black holes will be endowed
with scalar hair. On the other hand, we have also argued
that, when it is valid to assume that static, spherically
symmetric black holes will have no hair, their slowly
rotating counterparts will not have hair either.
Some comments are in order before closing. First, we

use the term “hair” loosely, to mean that the scalar has a
nontrivial configuration in the black hole spacetime. This
does not necessarily imply that the black hole has to carry
some independent scalar charge (indeed, it will not in the
case of the action [Eq. (7)] [18]). It is, however, enough to
argue that the black hole will be different than its general
relativity counterpart. Second, our attention has been
focussed on shift-symmetric theories because in specific
examples of scalar-tensor theories, where the scalar does
not exhibit shift symmetry, black holes with hair are already
known; see, for example, Ref. [21].
It is also worth mentioning that one could contest two

more of the assumptions of any no-hair theorem for scalar
fields. The first one is that the scalar has to respect the
symmetries of the metric. This might be particularly
relevant in the context of the shift-symmetric theories
considered here because the scalar field appears in the
field equations only through its derivatives. Hence, if one is
interested in a spacetime where Lξgμν ¼ 0, where Lξ is the

Lie derivative along the generator of the symmetry ξ, it
suffices to impose Lξ∇μϕ ¼ 0. This is a weaker condition
than imposing that Lξϕ ¼ 0, as is usually done. It is not
clear, however, if such solutions will be physically relevant.
It is also important to consider whether hair can be

induced by the presence of matter in the vicinity of the
black hole or by embedding the black hole in a cosmo-
logical background. In standard scalar-tensor theories, both
cases lead to the generation of scalar hair [22–27].
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