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According to a recent no-go theorem [M. Pusey, J. Barrett and T. Rudolph, Nat. Phys. 8, 475 (2012)],
models in which quantum states correspond to probability distributions over the values of some underlying
physical variables must have the following feature: the distributions corresponding to distinct quantum
states do not overlap. In such a model, it cannot coherently be maintained that the quantum state merely
encodes information about underlying physical variables. The theorem, however, considers only models
in which the physical variables corresponding to independently prepared systems are independent, and
this has been used to challenge the conclusions of that work. Here we consider models that are defined
for a single quantum system of dimension d, such that the independence condition does not arise, and
derive an upper bound on the extent to which the probability distributions can overlap. In particular, models
in which the quantum overlap between pure states is equal to the classical overlap between the
corresponding probability distributions cannot reproduce the quantum predictions in any dimension
d ≥ 3. Thus any ontological model for quantum theory must postulate some extra principle, such as a
limitation on the measurability of physical variables, to explain the indistinguishability of quantum states.
Moreover, we show that as d → ∞, the ratio of classical and quantum overlaps goes to zero for a class of
states. The result is noise tolerant, and an experiment is motivated to distinguish the class of models ruled
out from quantum theory.
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No-go theorems such as Bell’s [1] are of central
importance to our understanding of quantum mechanics.
Bell’s theorem shows that locally causal models must make
different predictions from quantum theory. In addition to
the fundamental significance of this result, Bell’s theorem
has applications in quantum information processing, most
notably in device-independent cryptography and random-
ness generation [2–5].
Recently, a number of new no-go results have been

derived, addressing a different question than whether nature
can be described by a locally causal theory. The question
concerns whether the quantum state should be viewed as
a description of the physical state of a system (an “ontic
state”) or as an observer’s information about the system
(an “epistemic state”). Many authors (see, e.g., Refs. [6–8]
and references therein) have argued for the latter, pointing
out, for example, that quantum collapse is analogous to
Bayesian updating of a classical probability distribution
when new data is obtained, or that the indistinguishability
of nonorthogonal quantum states is analogous to the
indistinguishability of overlapping probability distribu-
tions. Following the framework of Ref. [9], the Pusey-
Barrett-Rudolph (PBR) theorem [10] considers models of a
specific form, in which the quantum state corresponds to a
probability distribution over some set of underlying physi-
cal states, and hence can be thought of as representing
an observer’s partial information about the physical state.

The theorem shows that such models cannot recover the
quantum predictions unless the distributions are disjoint for
distinct quantum states. Roughly speaking, if the assump-
tions of the theorem are accepted, then the quantum state
must describe some part of reality.
One assumption of the PBR theorem is that the physical

states are uncorrelated for independently prepared systems.
It is interesting to investigate what can be established
without this assumption. Here, we consider a single quan-
tum system, and derive bounds on the extent to which the
probability distributions corresponding to distinct quantum
states can overlap. We show that what we call maximally
ψ-epistemic models, in which the overlap of the probability
distributions is large enough to explain fully the indistin-
guishability of quantum states, must make different pre-
dictions from quantum theory for Hilbert-space dimension
d ≥ 3. Our result is noise tolerant, allowing for experimental
tests to rule out this class of models. Furthermore, we show
that as d → ∞, any model recovering quantum predictions
must become arbitrarily bad at explaining quantum state
indistinguishability.
Nonorthogonality and epistemic states.—Nonorthogonal

quantum states cannot be distinguished with certainty in a
single shot. This is sometimes regarded as a distinctly
quantum phenomenon, but of course a similar thing is true
of classical probability distributions. Consider a standard
deck of 52 playing cards and a shuffling-and-drawing
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machine with two settings: with the first setting, a red card
is drawn at random, and with the second setting, the card
is a randomly chosen ace. The two settings correspond to
probability distributions p and q such that p ¼ ð1=26Þ for
all red cards and q ¼ ð1=4Þ for each ace. Given a single
card drawn from the pack, and asked to determine under
what setting the machinewas operating, one cannot succeed
with certainty. The reason is simply that the distributions p
and q overlap, e.g., p and q are both nonzero for the ace
of hearts.
This suggests that the inability to distinguish nonorthog-

onal quantum states could be explained analogously. In that
case, two quantum states would be indistinguishable in a
single-shot experiment because they would correspond to
overlapping distributions over states of reality. The aim of
thiswork is to explore the extent towhich such an explanation
is even possible, consistently with the quantum predictions.
Ontological models for quantum theory.—To formalize

this idea, we shall use the framework of ontological models
[9,11], a generalization of hidden-variable approaches. This
framework assumes that when a physical system has been
prepared in the quantum state jψi, it is actually in an ontic
state λ, which we can think of as the “state of reality.”
An ontological model assigns to each quantum state jψi an
epistemic state μψ , which is a probability distribution over
the set of ontic states Λ, and represents our ignorance about
which ontic state λ the system is in. Since an epistemic state
is a probability distribution, it must satisfy

μψ ðλÞ ≥ 0 and
Z

μψðλÞdλ ¼ 1: ð1Þ

The framework assumes that when a measurement is
performed, the probability for a given outcome depends
only on the ontic state λ. Hence for a measurement M and
outcome f, an ontological model assigns a response
function, which yields the probability ξMðfjλÞ of obtaining
the outcome f in the state λ, and we have

ξMðfjλÞ ≥ 0 and
X
f

ξMðfjλÞ ¼ 1: ð2Þ

To reproduce the predictions of quantum theory, response
functions must satisfy

Z
Λ
ξMðfjλÞμψ ðλÞdλ ¼ jhfjψij2 ð3Þ

for all jψi and f.
Standard distance measures, defined on probability

distributions and quantum states, will be useful in the
following. For distributions pðxÞ and qðxÞ, the classical
trace distance is

δCðp; qÞ ≔
1

2

Z
jpðxÞ − qðxÞjdx: ð4Þ

This quantity has an operational interpretation. Suppose
that the distributions pðxÞ and qðxÞ are associated with
two different preparations of the variable x (as with the
cards above), and suppose that equal a priori probabilities
are assigned to the two preparations. The probability of
correctly guessing the preparation given a single sample of
x is 1=2ð1þ δCðp; qÞÞ.
In the quantum case, the quantum trace distance, for

pure states, is given by

δQðψ ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhψ jϕij2

q
: ð5Þ

If one of a pair of quantum states jψi or jϕi is prepared with
equal probability, then, by using an optimal measurement,
the probability of correctly identifying which state has been
prepared is 1=2ð1þ δQðψ ;ϕÞÞ.
We define the classical overlap of two distributions p

and q as

ωCðp; qÞ ≔ 1 − δCðp; qÞ ¼
Z

minfpðxÞ; qðxÞgdx: ð6Þ

Similarly, for quantum states jψi and jϕi, let the quantum
overlap be given by

ωQðψ ;ϕÞ ≔ 1 − δQðψ ;ϕÞ: ð7Þ

Following Ref. [9], we make the following definition.
Definition 1.—An ontological model is ψ -epistemic if

there exists at least one pair of distinct quantum states, jψi
and jψi, such that the corresponding epistemic states μψ
and μϕ have nonzero overlap, i.e., ωCðμψ ; μϕÞ > 0. If a
model is not ψ-epistemic, then it is ψ-ontic [12].
There have been a number of works exploring whether

ψ-epistemic models can reproduce the predictions of
quantum theory. The question was first raised by Hardy
[13] and by Harrigan and Spekkens [9]. Reference [10]
then showed that—under an assumption to do with the
independence of separately prepared systems—they can-
not. The assumption is that when two quantum systems are
prepared independently, they can be assigned separate ontic
states λ1 and λ2, and that the joint distribution satisfies
μψ⊗ϕðλ1; λ2Þ ¼ μψ ðλ1Þ × μϕðλ2Þ. References [14–16] took
a different approach: from the assumptions that experi-
menters can make free choices, and that ontic states respect
relativistic causality, it is argued that the quantum state
must describe reality.
Other works have explored the possibilities for

ontological models for single systems, i.e., without
any assumptions about independent preparations, or
about relativistic causality. Reference [17] showed that
ψ-epistemic models exist for quantum systems of arbitrary
dimension. Reference [18] went further, demonstrating
that for a quantum system of arbitrary dimension, a ψ -
epistemic model exists with the additional property that
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ωCðμψ ; μϕÞ > 0 for every pair of nonorthogonal states jψi
and jϕi. References [18–20] showed that ψ-epistemic
models do not exist, given various additional assumptions.
In Refs. [21,22], the question was raised of whether ψ-
epistemic models can reproduce quantum predictions given
an assumption about the extent to which the epistemic
states overlap.
References [21,22] are the most direct precursors to this

work, since here we are also concerned with the extent to
which the distributions μψ and μϕ can overlap in models
which recover the predictions of quantum theory. An
advantage of the present work is that we use distance
measures that are robust under small variations, and hence
our results are noise tolerant and subject to experimental
test. The following is an easy theorem, previously noted
in Ref. [23].
Theorem 1.—In any ontological model that recovers the

predictions of quantum theory,

ωCðμψ ; μϕÞ ≤ ωQðψ ;ϕÞ ∀ ψ ;ϕ: ð8Þ

Proof.—Consider the optimal measurement for distin-
guishing two quantum states. Success occurs with proba-
bility PQ ≔ 1 − ωQðψ ;ϕÞ=2. Given the ontic state λ, the
maximum probability to correctly guess which preparation
was performed is given by PC ≔ 1 − ωCðμψ ; μϕÞ=2. But in
an ontological model the output of the quantum measuring
device depends only on the ontic state λ; thus, PQ ≤ PC
since PQ cannot be larger than what one would get by
optimally using the information encoded in λ.
Definition 2.—An ontological model is maximally ψ -

epistemic if and only if for all pairs of states ωCðμψ ; μϕÞ ¼
ωQðψ ;ϕÞ [24].The motivation for this terminology is that,
as we have already argued, the impossibility of discrimi-
nating nonorthogonal quantum states would be explained
in a natural way if the two quantum states sometimes
correspond to the same state of reality. But this explanation
would not be satisfying if the quantum and classical
overlaps were not equal. For then, the two classical
distributions could in principle be better discriminated
by a device with access to λ, and some additional
explanation must be adduced as to why the two quantum
states are hard to distinguish. In a maximally ψ-epistemic
model, on the other hand, the difficulty of discriminating
nonorthogonal quantum states is completely and quantita-
tively explained by the difficulty of discriminating the
corresponding epistemic states.
Ruling out maximally ψ-epistemic models.—Our results

rule out maximally ψ-epistemic models for quantum sys-
tems of dimension d ≥ 3, and they are noise tolerant. For
d ¼ 2, an ontological model due to Kochen and Specker
[25] can be shown to be maximally ψ-epistemic [26].
The case of three-dimensional systems, and an analysis

designed to account for experimental noise, will follow
below. First, we consider systems of dimension d ≥ 4.

Theorem 2.—Suppose that an ontological model repro-
duces the quantum predictions for a system of dimension
d ≥ 4, and that

ωCðμψ ; μϕÞ ≥ kωQðψ ;ϕÞ ∀ ψ ;ϕ

for some constant k. Then k < 4=ðd − 1Þ. If d is power
prime, then k < 2=d.
Proof.—Using terminology introduced by Caves, Fuchs,

and Schack [27], three pure states jai, jbi, and jci are PP-
incompatible if there exists an orthonormal basis fjfiig3i¼1

for the subspace spanned by jai, jbi, and jci such that
hf1jai ¼ 0, hf2jbi ¼ 0, and hf3jci ¼ 0. Reference [27]
showed the following. Let x1 ≔ jhajbij2, x2 ≔ jhbjcij2 and
x3 ≔ jhcjaij2. Then jai, jbi, and jci are PP-incompatible if
and only if [28]

x1 þ x2 þ x3 < 1; ðx1 þ x2 þ x3 − 1Þ2 ≥ 4x1x2x3:

ð9Þ

Recall that a pair of bases fjaiigi and fjbjigj is mutually
unbiased if jhaijbjij2 ¼ 1=d for all i, j, where d is the
Hilbert-space dimension. If d is power prime, then there
exist dþ 1 mutually unbiased bases [29]. Let jci be an
element of one such basis, and for i, γ ∈ f1;…; dg, let the d
remaining bases be fjeγi igi, where γ ranges over the distinct
bases and i over the elements within a basis. For α ≠ β
and d ≥ 4, the set fjeαi i; jeβj i; jcig is PP-incompatible
by Eq. (9).
Now, we consider an ontological model for systems

of dimension d ≥ 4 with d power prime. From the
PP-incompatibility of fjeαi i; jeβj i; jcig, it follows that there
exists a measurement M with outcomes fi, i ¼ 1;…; 4
such that

Z
Λ
ξMðf1jλÞμeαi ðλÞdλ ¼ jhf1jeαi ij2 ¼ 0; ð10Þ

Z
Λ
ξMðf2jλÞμeβj ðλÞdλ ¼

Z
Λ
ξMðf3jλÞμcðλÞdλ ¼ 0; ð11Þ

and the outcome f4 is a projector onto the orthogonal
subspace and has zero probability on each of the three
states.
Assume for contradiction that there is a subset Λ�⊆Λ

of nonzero measure such that μeαi ðλÞ, μeβj ðλÞ, μcðλÞ > 0 for

all λ ∈ Λ�. Equations (10) and (11) then imply that for
some λ, ξMðf1jλÞ ¼ ξMðf2jλÞ ¼ ξMðf3jλÞ ¼ 0. But this,
along with the fact that f4 has probability zero on all three
states, contradicts Eq. (2). For the quantum state jψi, let Λψ

denote the support of the distribution μψ . It follows that
for any α ≠ β, and for any i, j, Λeαi

∩Λeβj
∩Λc is a set of

measure zero.
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Now, for any pair of distributions μψ and μϕ,

Z
Λϕ

μψðλÞdλ ≥ ωCðμψ ; μϕÞ: ð12Þ

Assume that the ontological model satisfies ωCðμψ ; μϕÞ ≥
kωQðψ ;ϕÞ for all pairs of states. Then for any γ, i,

Z
Λeγ

i

μcðλÞdλ ≥ kð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=d

p
Þ: ð13Þ

For i ≠ j the vectors jeγi i and jeγji are orthogonal, and
can be distinguished by a single-shot measurement. It
follows that Λeγi

∩Λeγj
is a set of measure zero. Hence

Z
⋃iΛeγ

i

μcðλÞdλ ≥ dkð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=d

p
Þ: ð14Þ

Using the fact that Λeαi
∩Λeβj

∩Λc is a set of measure zero,

Z
⋃γ ⋃i Λeγ

i

μcðλÞdλ ≥ d2kð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=d

p
Þ: ð15Þ

This gives

k ≤
1

d
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=d

p
Þ < 2

d
: ð16Þ

The result for a system of arbitrary dimension d ≥ 4 now
follows immediately. Consider a d0-dimensional subspace,
where d0 ≤ d and d0 is power prime. The theorem applies
to ontological models that recover the quantum predictions
for preparations and measurements within this subspace.
Hence any ontological model for the d-dimensional system
must have k < 2=d0. Bertrand’s Postulate states that for
every natural number n ≥ 2, there is a prime between n and
2n [30]. Choosing n ¼ ⌊d=2⌋ yields k < 4=ðd − 1Þ.
Corollary 1.—No maximally epistemic ontological

model can reproduce the quantum predictions for a system
of dimension d ≥ 4.
Proof.—For a maximally epistemic ontological model,

the antecedent of Theorem 2 holds with k ¼ 1. But then we
conclude that k < 1, reaching a contradiction. □

Moreover, the upper bound on k asymptotically tends to
zero, meaning that as d → ∞, every ontological model will
assign a ratio between the classical and quantum overlaps
tending to zero for at least some pairs of quantum states.
Note.—Examination of the proof shows that it is possible

to state a stronger result (which we have left out of Theorem
2 for simplicity). Suppose that kðψ ;ϕÞ is defined so that for
each pair of states,ωCðμψ ; μϕÞ ¼ kðψ ;ϕÞωQðψ ;ϕÞ. Then, a
bound can be derived on the value of kðψ ;ϕÞ, averaged
over the states used in the proof,

X
α;i

kðc; eαi Þ
d2

<
4

d − 1
; ð17Þ

where jci, jeαi i all lie within a power prime-dimensional
subspace. Since jci can be chosen to be an arbitrary state
(by applying the same unitary to jci and all the other states
in the proof, thus maintaining their overlaps), this implies
that for every quantum state in d ≥ 4, there exists a finite
set of states such that the average ratio of classical and
quantum overlaps is bounded as above.
The noisy case.—In a real experiment, observed relative

frequencies will not exactly match the quantum predictions;
hence, if the experiment is to rule out a class of ontological
models, it is necessary to consider models that only
approximately reproduce quantum predictions. Suppose
that an experiment is carried out in which quantum systems
are repeatedly prepared and then measured. Each time, the
preparation is (intended to be) of a pure state chosen at
random from the set of mutually unbiased bases employed
in the proof of Theorem 2. The measurement is (intended
to be) either a projective measurement onto one of these
bases, or a projective measurement M with outcomes
f1;…; f4, chosen so that hf1jeαi i ¼ hf2jeβj i ¼ hf3jci ¼ 0

for some triple ðjeαi i; jeβj i; jciÞ, with f4 corresponding to a
projector onto the orthogonal subspace.
Let R½gjψ � be the relative frequency with which outcome

g is observed when the preparation is ψ . Quantum theory
predicts, for example, that if hf1jeαi i ¼ 0, and the experi-
ment is carried out perfectly, then R½f1jeαi � will be zero,
while noise will ensure that R½f1jeαi � is typically greater
than zero. The following analysis is designed to take this
noise into account. For simplicity, we assume that the
measurement is perfectly aligned in the three-dimensional
subspace spanned by (jeαi i, jeβj i, jci), ignoring the pos-
sibility that the outcome f4 occurs. We also ignore the
related issue of detector inefficiency.
For each triple we define the average

ϵðc; eαi ; eβj Þ ≔
1

3
ðR½f1jeαi � þ R½f2jeβj � þ R½f3jc�Þ: ð18Þ

For each pair of states, chosen from the same basis, eαi and
eαj (i ≠ j), we consider a measurement onto that basis, and
define the average

ϵðeαi ; eβj Þ ≔
1

2
ðR½eαj jeαi � þ R½eαi jeβj �Þ: ð19Þ

Now we consider an ontological model that predicts
probabilities that coincide with the observed data. This
means that for each preparation ψ and outcome g, the
probability predicted by the model satisfies

PðgjψÞ ≔
Z
Λ
ξMðgjλÞμψðλÞdλ ¼ R½gjψ �: ð20Þ
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For simplicity, the following assumes that the dimension d
is power prime. It is shown in Appendix 1 (in the
Supplemental Material [31]) that in this case

kd2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 −

1

d

r �
≤ 1þ 3

X
α<βi;j

ϵðc; eαi ; eβj Þ

þ 2
X

α i<j

ϵðeαi ; eαj Þ: ð21Þ

If we average the noise terms over all possible choices of
measurement used in the experiment, defining

ϵ1 ≔
P

α<β;i;jϵðc; eαi ; eβj Þ
d3ðd − 1Þ=2 ; ϵ2 ≔

P
α;i<jϵðeαi ; eαj Þ
d2ðd − 1Þ=2 ;

ð22Þ
then

kd2ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=d

p
Þ ≤ 1þ 3

2
d3ðd − 1Þϵ1 þ d2ðd − 1Þϵ2:

ð23Þ
Hence

k ≤
1

d

�
1þ d2ðd − 1Þ

�
3

2
dϵ1 þ ϵ2

��
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=d

p
Þ

<
2

d
þ d2ð3dϵ1 þ 2ϵ2Þ: ð24Þ

For any value of d ≥ 4 there exist small but nonzero
values of ϵ1 and ϵ2 for which the experimentally deter-
mined bound k < 1 can be achieved. The result is therefore
robust against small amounts of experimental noise and
does not admit a finite-precision loophole. In particular, a
value of k < 1 is possible if the noise is bounded by

3dϵ1 þ 2ϵ2 <
2

d − 1

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=d

p
−

1

d2

�
: ð25Þ

Assuming ϵ ¼ ϵ1 ¼ ϵ2, this requires an error of ϵ < 0.0034
for d ¼ 4 and even lower for higher dimensions. A high-
precision measurement is required to achieve this, but it is
one that is within the reach of the current state of the art
using, for example, ion trap [32,33] or magnetic resonance
[34] technology.
Ruling out maximally epistemic models for d ¼ 3.—The

proof of Theorem 2 does not apply to the d ¼ 3 case,
since mutually unbiased bases supply PP-incompatible
triples only if d ≥ 4. It is, nonetheless, possible to rule
out maximally epistemic models. The analysis of the noisy
case turns out to be useful, because in d ¼ 3 one can
construct a proof that makes use of triples of quantum states
that are close to, rather than exactly, PP-incompatible.
One can then apply an inequality analogous to Eq. (21).

The details of this argument are given in Appendix 2 in the
Supplemental Material [31]. We obtain k ≤ 0.95.
Conclusion.—We have considered ontological models

for quantum systems, wherein a quantum state corresponds
to a probability distribution over some set of ontic states.
From an analysis of preparations and measurements on a
single system, we have derived an upper bound on the
extent to which probability distributions corresponding to
distinct quantum states can overlap. Our results imply that
no ψ-epistemic model can account for the indistinguish-
ability of quantum states merely through the indistinguish-
ability of the corresponding probability distributions.
This undermines one of the main motivations for consid-
ering such models, and implies that a limitation on the
measurability of ontic states is a necessary feature of any
ontological model that reproduces quantum theory.
Ontological models might be viewed as a schematic

account of an underlying theory that is more fundamental
than quantum theory, but it might equally be thought of
as a classical simulation of quantum theory. Either way, it is
interesting to investigate the constraints on such models,
given that they reproduce quantum predictions. An exper-
imental challenge is to perform an experiment with
sufficient precision that maximally ψ-epistemic models
are ruled out. Finally, in prior work, Montina has estab-
lished interesting connections between ontological models
and communication complexity problems [35]. It would be
interesting to determine the relationship between our results
and communication complexity.
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