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Quantum melting of a ferroelectric moment in the frustrated hydrogen-bonded system with the “ice rule”
is studied theoretically by using quantum Monte Carlo simulation. The large number of nearly degenerate
configurations are described as the gauge degrees of freedom; i.e., the model is mapped to a lattice gauge
theory, which shows the confinement-deconfinment transition (CDT). The dipole-dipole interaction J2, on
the other hand, explicitly breaks the gauge symmetry leading to the ferroelectric transition at finite
temperature T. It is found that the crossover from the FT to CDT manifests itself in the reduced correlation
length of the polarization ξFT ∼ ΔðK − KcÞ−ν, with Δ ∝

ffiffiffiffiffi
J2

p
while Kc and ν remains finite in the limit

J2 → 0. In contrast, the Curie-Weiss-like law for the susceptibility χ and the spontaneous polarization
behaves smoothly and the length scale ξCDT, related to the molecular symmetry and volume for CDT, does
not reduce in this limit.
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The hydrogen-bonded systems are ideal laboratories to
study quantum tunneling. The ferroelectric properties of
these systems have attracted a lot of attention since the
old work of Slater on KH2PO4 (KDP) [1]. The quantum
melting of the ferroelectric order to result in the quantum
paraelectricity is a rather common phenomenon observed in
several hydrogen-bonded ferroelectrics [2–5], which is
usually described by the transverse Ising model

H ¼ −
X
ij

Jijσ
z
iσ

z
j − K

X
i

σx; ð1Þ

where σz ¼ �1 specify the positions of the hydrogen atoms,
Jij is the dipole-dipole interaction, and K represents the
tunneling matrix element. These two interactions compete
with each other, and by increasing K, a phase transition from
the ordered state to the quantum disordered phase occurs.
On the other hand, it often happens that the constraints

are significant to the hydrogen-bonded systems. Actually,
the hydrogen positions in the representative system KDP
are already subject to the constraint, i.e., the so-called “ice
rule” [1]. Namely, only two of the four hydrogen atoms
next to a tetrahedron are approaching the center for the low-
energy sector. A similar constraint is also relevant to the
recently studied quasi-two-dimensional antiferroelectric
squaric acid (H2SQ), where the square molecule is sur-
rounded by four molecules with hydrogen bonds [5], and
the two-in-two-out configurations are energetically stable.
This ice rule is the generalization of the hydrogen bonds in
ice leading to the macroscopic degeneracy of the ground-
state configurations as discussed by Pauling in the 1930s
[6]. Therefore, an important issue is how this macroscopic

degeneracy of the low-energy states in the hydrogen
bonded systems affects the nature of the phase transition.
The constraints imposed on the physical variables are

common phenomena found in many other cases. Frustrated
magnets are one of such examples, where some of the
macroscopically degenerate spin configurations are selected
as the lowest energy states. Spin ice in a pyrochlore
ferromagnet is a representative example, in which the
hydrogen position is replaced by the direction of the spin,
and the ice rule applies simultaneously in every tetrahedron.
This property leads to an interesting phenomena, e.g., the
absence of the long-range ordering down to zero temperature
and the deconfined magnetic monopoles as the excitations
[7]. These are described well by the gauge theory represent-
ing the constraints within the framework of the classical
statistical mechanics. Quantum effects on the spin ice model
have attracted a lot of interest recently [8,9].
In this Letter, we develop a theory for the organic

ferroelectrics with macroscopic degeneracy. A Z2 gauge-
invariant term accounting for the ice rule is introduced
explicitly [10]. Different from a Uð1Þ gauge theory, our
model exhibits two types of quantum phase transitions, i.e.,
the confinement-deconfinement transition (CDT) of the
gauge field and the ferroelectric transition (FT) of the local
dipole moments. We relate these two phenomena by
introducing a dipole-dipole interaction J2 explicitly break-
ing the gauge symmetry [see Eq. (3)]. Because of the
macroscopic degeneracy, different from the ordinary FT,
we found two length scales ξFT and ξCDT (defined later) in
the vicinity of the FT as the system is close to the CDT.
Taking the squaric acid as a prototype, we consider a

two-dimensional model, H ¼ H0 þH1 þH2, where
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z
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σxi ; ð2Þ

H1 ¼ J1
X
□

ðσz1σz3 þ σz2σ
z
4Þ; H2 ¼ −J2

X
hABi

~PA · ~PB ð3Þ

in the lattice in Fig. 1, where the summation of □ in
Eqs. (2) and (3) is over the plaquettes of the blue lattice in
Fig. 1 resembling the H2SQ molecules and the σ variables
are defined on the bonds of the plaquettes [5]. On
each lattice bond there is a hydrogen ion shared by two
neighboring molecules representing the hydrogen bond.
We use σz to parametrize the position of hydrogen ions in
the following way: If a hydrogen is closer to molecule A, it
is the “þ” state, otherwise it is a “−” state, representing a
gauge field. The H2 in Eq. (3) represents the nearest-
neighbor dipole-dipole interaction, and the components of
the dipole moment ~Pi are defined by PðA;BÞx ¼ ð�Þ 1

4
ðσz1 þ

σz2 − σz3 − σz4Þ and PðA;BÞy ¼ ð�Þ 1
4
ðσz2 þ σz3 − σz1 − σz4Þ,

where (þ) is for molecule A and (−) is for molecule B.
The ice rule constrained by the gauge term J0 and the

Ising term J1 generates a macroscopic degeneracy, which is
distinct from the one in the antiferromagnetic Ising model
in the 2D pyrochlore (checkerboard) lattice [11] and the
quantum vertex model [12,13]. The gauge term favors eight
different configurations in the low-energy sector illustrated
in Fig. 2. Note that this quantum Hamiltonian H0 corre-
sponds to the (2þ 1)-dimensional Ising gauge theory in the
temporal gauge; i.e., the time component of the gauge field
is fixed to be one. The addition of the J1 term lifts the
degeneracy so that the states of Figs. 2(e)–2(h) remain.
They are particularly interesting because they carry finite
dipole moments. For example, the direction of the dipole
moments for molecule A are shown by red arrows in Fig. 2.
The finite-temperature property due to the gauge term

was studied previously by Maier et al. [10]. Here, we focus

on the quantum phase transition in the presence of the
transverse field. The quantum phase diagram at zero temper-
ature can be summarized in Fig. 3. When J1 ¼ J2 ¼ 0, there
is a second-order CDT at critical Kc [14,15]. At first glance,
the introduction of the J1 term breaks the gauge symmetry
and the CDT. However, there remains a hidden gauge
symmetry. To see this, one can introduce the η variables
defined in the dual lattice in Fig. 1. Redefining the σz variable
as σzj ¼ ηiηj in a restricted Hilbert space of the minimum J0
energy, for J2 ¼ 0, we obtain the action

S ¼ −βJ0 þ
2βJ1
n

X
□

ηiηjηkηl − K0X
□

0
ηiηjηi0ηj0 ; ð4Þ

where □ (□0) are the plaquettes in the spatial (imaginary-
time) direction in the dual lattice, n is the dimension in the
imaginary-time direction, and β ¼ 1=ðkBTÞ. In Eq. (4), we
express the σx term in the η variables with K0 ¼
log½cothðβK=nÞ�=2. The hidden symmetry protects the
CDT to extend to the finite J1 region. We also perform

FIG. 1 (color online). The two-dimensional square lattice (blue
lines) formed by the squaric acid molecules. The red circles label
the hydrogen ions. The η variables are defined on the lattice sites.
The hydrogen positions are parametrized by the σz variables,
which are defined on the lattice bonds forming a two-dimensional
dual lattice (black dashed lines).

FIG. 3 (color online). The zero-temperature phase diagram. For
J2 ¼ 0, there are two phases separated by a confinement-
deconfinement phase transition. For finite J2, the phase space
is divided by a second-order ferroelectric phase transition.

FIG. 2 (color online). The ground-state configuration of each
plaquette in the model of H0 in Eq. (2). There are finite dipole
moments in the states (e)–(h), but not in the states (a)–(d). The
directions of the dipole moment are drawn in red for the
molecules of group A.
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the quantum Monte Carlo calculation to confirm this. The
numerical results are prepared in the Supplemental Material
[16]. Our analysis indicates that the CDT is a robust
transition, distributed over a wide range in the phase diagram
where the ice rule is satisfied. As a first result, the phase
diagram is divided into the deconfined phase and the
confined phase in the J2 ¼ 0 plane.
Even without the dipolar interaction J2, the dielectric

susceptibility in the novel deconfined phase diverges for
K ≤ Kc at T ¼ 0. In Fig. 4, we perform the Monte Carlo
calculation to compute the correlation in the imaginary-
time direction, defined by

Cτ ¼
1

N

X
i

hPxði; τÞPxði; 0Þi; ð5Þ

where τ is the coordinate in the imaginary-time direction.
The temperature kBT ¼ 0.02J0 and the range of τ is 10 <
τ < 30 in Fig. 4. The Monte Carlo simulation is performed
in the lattice up to 32 × 32 sites in 106 Monte Carlo
steps. The details of the Monte Carlo simulations are given
in the Supplemental Material [16]. Under the temporal
gauge, Eq. (5) contains gauge-invariant terms; i.e.,
hσiðτÞσið0Þi ≠ 0. Thus, Cτ does not vanish due to the
gauge symmetry at J2 ¼ 0. We obtain that Cτ has a power-
law decay for K < Kc and Cτ has an exponential decay for
K > Kc. Therefore, the dielectric susceptibility,

χ ¼ 1

N

X
i;j

Z
β

0

dτhPxði; τÞPxðj; 0Þi; ð6Þ

diverges for K ≤ Kc at T ¼ 0. We note that at K ¼ 0 the
system is classical and χ ∼ 1=T, also diverging at T ¼ 0.
Introducing the dipolar interaction J2 ≠ 0, the ground

state develops a spontaneous polarization for K < KcðJ2Þ.
At finite temperature, a ferroelectric transition can occur.
Correspondingly, χ diverges at the critical temperature Tc
and the power-law behavior of χ as T → 0 disappears.
Moreover, a quantum phase transition to the dielectric state
can be driven by increasing K. In Fig. 5, χ is computed for
six different J2 values. The dielectric susceptibility satisfies
the Curie-Weiss-like behavior χ ¼ CðK − KcÞ−1 for all J2,
and Kc vary with J2 as shown in the inset, which establishes
our first relation between CDTand FT. The confined phase at
J2 ¼ 0 and the dielectric phase for finite J2 share a similar K
dependence. C, shown in the inset of Fig. 5, are independent
of J2, andKc of FT converges to a finite value, indicating that
the FT is robust and the dipolar interaction J2 is a relevant
perturbation. The convergent value ofKc at J2 ¼ 0 is the one
for CDT taking place. Extending to the finite J2 region,
the deconfined phase at the zero-J2 plane becomes the
ferroelectric phase, and the confined phase becomes the
dielectric phase as depicted in Fig. 3. Because of these
nontrivial connections, how the criticality of the confinement-
deconfinement phase transition of the gauge field affects the
criticality of the ferroelectric phase transition is the main
scope of this Letter.
To answer this, we compute the ferroelectric correlation

length ξFT, defined by
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FIG. 4 (color online). The logarithmic plot of the correlation in
the imaginary-time direction at J2 ¼ 0, where CDT takes place. τ
is the coordinate in the imaginary-time direction. Using
J1 ¼ 0.2J, the Kc of CDT at J2 ¼ 0 is 0.64, as shown in the
inset of Fig. 5. We plot the results for K ¼ 0.1 and 0.2 (< Kc) to
demonstrate the power-law behavior in the deconfined phase and
K ¼ 0.9, 1.0, and 1.1 (> Kc) to show the exponential decay in the
confined phase. Note that Cτ is independent of τ for K ¼ 0, and
the numerical error is 0.1%–1%.
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FIG. 5 (color online). The inverse of the dielectric susceptibility
χ−1 for various J2 values is computed for J0 ¼ 1 and J1 ¼ 0.2 at
T ¼ 0.05J0. The dielectric susceptibility satisfies well the Curie-
Weiss-like behavior χ ¼ C=ðK − KcÞ for K > Kc. We plot, in
particular, the full range of K for the J2 ¼ 0 case to show the
divergence of the susceptibility for K < Kc. In the inset, we
extract C and Kc as functions of J2. The data of C use the right-
hand y axis and Kc uses the left-hand axis. C remains unity for all
J2. Kc has a linear relation with J2, terminating at Kc ¼ 0.64 for
J2 ¼ 0, where the confinement-deconfinement phase transition
takes place. Note that the numerical error is ∼0.2%.
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hPsðrÞPsð0Þi ∝
e−r=ξFT

r
; s ¼ x or y; ð7Þ

for K > Kc in Fig. 6. The FT is a second-order phase
transition because both the dielectric constant and the
correlation length diverge at K ¼ Kc. As shown in
Fig. 6(a), ξFT obeys ∼Δ=ðK − KcÞν very nicely, with
ν ¼ 0.46, 0.42, 0.41, 0.46, 0.55 for J2 ¼ 0.2, 0.4, 0.8,
1.2, 2.0. We believe that the fluctuation of ν comes from
error bars in the estimation. Those values of ν are closer to the
mean-field values from the 3D Ising value ν ≈ 0.6, indicating
that the systems are outside the critical region. For a
conventional ferroelectric system without macroscopic
ground-state degeneracy, Δ is a constant independent of
the coupling constant J2. However, we obtain Δ ∼

ffiffiffiffiffi
J2

p
as

J2 → 0 in the numerical calculations and in the mean-field
theory (detailed in the Supplemental Material [16]) as shown
in Fig. 6(b). The connection between the FT and the CDT is
highly nontrivial and can be understood as the following. As

is well known, any physical quantity without gauge invari-
ance has a zero ground-state expectation value in the gauge-
invariant theory [14,15]. The correlation function at finite
distance in Eq. (7) should be zero at J2 ¼ 0, since the hσziσzji
for i ≠ j therein is not gauge invariant with respect to the
spatial gauge transformation. Consequently, although the
polarization moment C remains unity at J2 ¼ 0, not only
does the system not order, but additiionally the spatial
correlation is restricted to zero. In other words. the dipolar
interaction in Eq. (3) introduces just the k dependence of the
ferroelectric wave. When J2 ¼ 0, the system is free of spatial
coupling and, therefore, ξFT vanishes. This profound feature
provides a goodmeasure of distance for a ferroelectric system
in the vicinity of the CDT. The measurement of the spatial
correlation length by neutron scattering or Raman scattering
[17,18] toward the phase transition can be used to detect
whether or not the system is near the CDT.
Bordered by the deconfined phase, the ferroelectric

phase for small but finite J2 is different from the conven-
tional ferroelectric materials. The frustration due to the ice
rule is constrained by the molecular symmetry and volume,
which also extends to finite J2. At J2 ¼ 0, it can be
parametrized by the product of four σz’s in a molecule, i.e.,
pi ¼ σz1σ

z
2σ

z
3σ

z
4. In the critical region, the correlation hpipji

is proportional to R−ðd−α=νÞgðR=ξCDTÞ, where R ¼ jRi −
Rjj is the distance between molecules i and j, while α and ν
are the critical exponent for the specific heat and the
correlation length of the corresponding 3D Ising model,
respectively. The function g is a scaling function and ξCDT
is the correlation length in the 3D Ising model, which
diverges at K ¼ Kc [15]. The correlation naturally extends
to the finite J2 region. Therefore, there are two length scales
behaving differently in the ferroelectric phase in the small J2
region. As ξFT converges to the atomic scale, ξCDT remains
finite at J2 ¼ 0. Representing the molecular symmetry, ξCDT
can actually be measured in the nonresonance Raman
scattering as discussed in the Supplemental Material [16].
In conclusion, the effect of the ice rule and consequent

gauge symmetry in the hydrogen-bonded ferroelectrics is
intricate. Although the confinement-deconfinement transi-
tion at J2 ¼ 0 cannot be described by the local order
parameter, it can be indirectly probed by the measurement
of the dielectric susceptibility. For K > Kc, the system is in
the confined phase with the dielectric susceptibility obey-
ing a Curie-Weiss-like law. ForK ≤ Kc, the system is in the
deconfined phase with a divergent dielectric susceptibility.
As soon as the dipolar interaction J2 is turned on, the
ferroelectric phase develops for K ≤ Kc as T is lowered.
When the dipolar interaction is small, the approximate
gauge invariance suppresses the growth of the critical
region by regulating the spatial correlation length ξFT
obeying ∼ΔðK − KcÞ−ν. We demonstrate Δ ∼

ffiffiffiffiffi
J2

p
both

in the numerical simulation and in the mean-field treatment.
Our theory provides a scheme to uncover the shadow of the
gauge field as well as to realize the accompanying CDT by
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FIG. 6 (color online). (a) The logarithmic plot of the correlation
length ξFT. ν is obtained as 0.55, 0.46, 0.41, 0.42, 0.46 for
J2 ¼ 2.0, 1.2, 0.8, 0.4, 0.2, respectively. (b) The coefficientΔ as a
function of J2. The dotted curve is the fitting by the mean-field
result.
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identifying the two length scales ξFT and ξCDT near the
ferroelectric phase transition. A future research direction
can be a further extension to include the long-ranged
dipolar interaction. Most importantly, a theory to describe
the class of FT belonging to the first-order phase transition
should be developed.
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