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We demonstrate the following conclusion: If jΨi is a one-dimensional (1D) or two-dimensional (2D)
nontrivial short-range entangled state and jΩi is a trivial disordered state defined on the same Hilbert space,
then the following quantity (so-called “strange correlator”) Cðr; r0Þ ¼ hΩjϕðrÞϕðr0ÞjΨi=hΩjΨi either
saturates to a constant or decays as a power law in the limit jr − r0j → þ∞, even though both jΩi and jΨi
are quantum disordered states with short-range correlation; ϕðrÞ is some local operator in the Hilbert space.
This result is obtained based on both field theory analysis and an explicit computation of Cðr; r0Þ for four
different examples: 1D Haldane phase of spin-1 chain, 2D quantum spin Hall insulator with a strong
Rashba spin-orbit coupling, 2D spin-2 Affleck-Kennedy-Lieb-Tasaki state on the square lattice, and the 2D
bosonic symmetry-protected topological phase with Z2 symmetry. This result can be used as a diagnosis for
short-range entangled states in 1D and 2D.
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A short-range entangled (SRE) state is a ground state of a
quantum many-body system that does not have ground-
state degeneracy or bulk topological entanglement entropy.
But a SRE state (for example, the integer quantum Hall
state) can still have protected stable gapless edge states.
Thus, it appears that the bulk of all the SRE states are
identically trivial, and a nontrivial SRE state is usually
characterized by its edge states [1]. In this Letter, we
propose a diagnosis to determine whether a given many-
body wave function defined on a lattice without boundary
is a nontrivial SRE state or a trivial one. This diagnosis
is based on the following quantity called a “strange
correlator”: [2]

Cðr; r0Þ ¼ hΩjϕðrÞϕðr0ÞjΨi
hΩjΨi : ð1Þ

Here, jΨi is the wave function that needs diagnosis, and jΩi
is a direct product trivial disordered state defined on the
same Hilbert space. Our conclusion is that if jΨi is a
nontrivial SRE state in one or two spatial dimensions, then
for some local operator ϕðrÞ, Cðr; r0Þ will either saturate
to a constant or decay as a power law in the limit
jr − r0j → þ∞, even though both jΩi and jΨi are disor-
dered states with short-range correlation.
Another possible way of diagnosing a SRE wave

function is through its entanglement spectrum [3]. If a
SRE state has nontrivial edge states, an analogue of its edge
states should also exist in its entanglement spectrum [4].
However, many SRE states are protected by certain
symmetry, and some SRE states are protected by lattice
symmetries [for example, the spin-2 Affleck-Kennedy-
Lieb-Tasaki (AKLT) state on the square lattice requires
translation symmetry]. If the cut we make to compute the

entanglement spectrum breaks such lattice symmetry, then
the entanglement spectrum would be trivial, even if the
original state is a nontrivial SRE state. By contrast, the
strange correlator in Eq. (1) is defined on a lattice without
edge; thus, it already preserves all the symmetries of the
system, including all the lattice symmetries. Thus, the
strange correlator can reliably diagnose SRE states pro-
tected by lattice symmetries as well.
The strange correlator can be roughly understood as

follows: jΨi can be viewed as a generic initial state evolved
with a constant nontrivial SRE Hamiltonian from τ ¼ −∞
to 0; hΩj is a state evolved from τ ¼ þ∞ to 0 with a trivial
Hamiltonian, and thus, the strange correlator can be viewed
as a “correlation function” at a temporal domain wall of the
quantum field theories (QFTs) at τ ¼ 0; see Fig. 1(a). If
there is an approximate Lorentz invariant description of the
system, a space-time rotation can transform Eq. (1) to a
space-time correlation at a spatial interface between non-
trivial and trivial SRE systems; see Fig. 1(b). And for one
and two spatial dimensions, a spatial interface between
trivial and nontrivial SRE states should have either long-
range or power-law correlation between certain local
operators, which after Lorentz rotation will lead to the
conclusion of this Letter (see the Supplemental Material
[5]). A similar observation of Lorentz rotation was used
to derive the bulk wave function of topological super-
conductors [6].
For bosonic SRE states that are protected by certain

symmetry [so-called symmetry-protected topological
(SPT) states [7,8]], the argument above can be demon-
strated more explicitly. In Ref. [9], it was demonstrated that
a large class of one-dimensional (1D) and two-dimensional
(2D) bosonic SPT states can be described by the following
two nonlinear sigma model field theories:
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S1D ¼
Z

dxdτ
1

g
ð∂μnÞ2 þ

i2π
8π

ϵabcϵμνna∂μnb∂νnc; ð2Þ

S2D ¼
Z

d2xdτ
1

g
ð∂μnÞ2 þ

i2π
12π2

ϵabcdϵμνρna∂μnb∂νnc∂ρnd:

ð3Þ
Here, nðxÞ is an O(3) or O(4) vector order parameter with
unit length constraint: n2 ¼ 1. Different SPT phases are
distinguished from each other based on different imple-
mentations of the symmetry group on the vector order
parameter n. In both 1D and 2D, ground-state wave
functions of SPT phases can be derived based on
Eqs. (2) and (3) (see Ref. [10]),

jΨid ∼
Z

DnðxÞe−
R
Sd

ddxð1=GÞð∇nÞ2þWZWd½n�jnðxÞi; ð4Þ

where Sd is the compactified real space manifold, and
WZWd½n� is a real space Wess-Zumino-Witten term

WZW1½n� ¼
Z

1

0

du
i2π
8π

ϵμνϵabna∂μnb∂νnc;

μ; ν ¼ x; u;

WZW2½n� ¼
Z

1

0

du
i2π
12π2

ϵabcdϵμνρna∂μnb∂νnc∂ρnd;

μ; ν; ρ ¼ x; y; u: ð5Þ

In contrast, the trivial state wave function is a superposition
of all configurations of jnðxÞi without a Wess-Zumino-
Witten (WZW) term. On the basis of the wave functions in
Eq. (4), the strange correlator of order parameter nðxÞ reads

Cðr; r0Þ ¼
R
DnðxÞnaðrÞnbðr0Þe−

R
Sd

ddxð1=GÞð∇nÞ2þWZWd½n�
R
DnðxÞe−

R
Sd

ddxð1=GÞð∇nÞ2þWZWd½n�
:

ð6Þ

Mathematically, this strange correlator can be viewed as an
ordinary space-time correlation function of a ½ðd − 1Þ þ 1�-
dimensional field theory with a WZW term, as long as we
view one of the spatial coordinate as the time direction.
When d ¼ 1, this strange correlator is effectively a spin-
spin correlation of one isolated free spin 1/2, and the
correlation is always long range. When d ¼ 2, this strange
correlator is effectively a space-time correlation function of
a ð1þ 1ÞD O(4) nonlinear sigma model with a WZW term,
and when this model has a full SO(4) symmetry, this theory
is an SUð2Þ1 conformal field theory with power-law
correlation [11,12]; when the symmetry of the system is
a subgroup of SO(4), as long as the residual symmetry
prohibits any linear Zeeman coupling to order parameter n,
this ð1þ 1ÞD system either remains gapless or sponta-
neously breaks the symmetry and develops long-range
order. Thus, the strange correlator is either long range or
decays with a power law.
The two arguments above both rely on a certain

continuum limit description of the SRE state. However,
for a fully gapped system, when the gap is comparable with
the ultraviolet energy scale of the system, a continuum limit
description may not be appropriate. In the rest of the Letter,
we will compute the strange correlator for several examples
of SRE states far from the continuum limit; i.e., the gap of
the SRE states is comparable with UV cutoff. We will see
that in some examples, the strange correlator is indeed
different from the physical edge of the SRE state, but our
qualitative conclusion is still valid.
The first example we study is the AKLT state [13,14] of

the Haldane phase of spin-1 chain. In the Sz basis, the
AKLT wave function is a “dilute” Néel state; namely, it is
an equal weight superposition of all the Sz configurations
with an alternate distribution of jþi ¼ jSz ¼ þ1i and
j−i ¼ jSz ¼ −1i, sandwiched with arbitrary numbers of
j0i ¼ jSz ¼ 0i [15]

jΨi ¼
X 1

N
j þ 0 � � � 0 − 0 � � � 0þ � � �i: ð7Þ

We choose the trivial state to be jΩi ¼ j000 � � �i.
Straightforward calculation leads to the following answer
of the strange correlator:

Cðr; r0Þ ¼ hΩjSþr S−r0 jΨi
hΩjΨi ¼ 2; ð8Þ

which is the expected long-range correlation.
The second example we study is the two-dimensional

quantum spin Hall (QSH) insulator with a Rashba spin orbit
coupling. We will use the same notation as in Ref. [16]. The
QSH insulator Hamiltonian reads

FIG. 1 (color online). (a) jΨi and hΩj are given by infinite time
evolution of their QFTs from below and above, respectively. The
strange correlator can be viewed as the correlator at the τ ¼ 0
interface. (b) Under the Lorentz rotation, the two QFTs are
separated by the x ¼ 0 interface, and the strange correlator can be
interpreted as the correlation function on this spatial interface.

PRL 112, 247202 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
20 JUNE 2014

247202-2



H ¼ t
X
hi;ji

c†i cj þ iλSO
X
hhi;jii

νijc
†
i s

zcj

þ λR
X
hi;ji

c†i ðs × d̂ijÞzcj þ λv
X
i

ξic
†
i ci: ð9Þ

λSO is the spin-orbit coupling that leads to the QSH
topological band structure, λR is the Rashba coupling that
breaks the conservation of sz, and λv is a staggered potential
that leads to charge density wave. The electron operator ci
carries spin and sublattice indices; thus, the strange
correlator Cðr; r0Þ is a 4 × 4 matrix. For QSH state jΨi,
we choose λSO ¼ t, λR ¼ 0.5t, λv ¼ 0; trivial state jΩi is
chosen to be a strong CDW state with λSO ¼ t, λR ¼ 0.5t,
λv ¼ 10t. These two states are far from the continuum
limit; namely, the gap is comparable with the UV cutoff.
Figure 2(a) shows the amplitude of strange correlator

jCkj ¼ jhΩjc†A;↑;kcB;↑;kjΨi=hΩjΨij plotted in the momen-
tum space. There is one clear singularity at the corner of the
Brillouin zone, which diverges as ∼1=jkj, as demonstrated
in Fig. 2(b) (see the Supplemental Material [17]). This
implies that in the real space the strange correlator decays
as jCðr; r0Þj ∼ 1=jr − r0j, which is consistent with the result
obtained from Lorentz transformation, despite the large
bulk gap.
The third example we will study is the spin-2 AKLT state

on the square lattice [14,18], which is a SPT state protected
by the on-site Z2 × Z2 and the lattice translation symmetry
[19], whose wave function has a tensor product state
representation [20,21]

jΨi ¼
X
fmig

tTrð⊗i TmiÞjfmigi: ð10Þ

Here, mi ¼ 0;�1;�2 labels the Sz quantum number of
the spin-2 object on site i, and jfmigi is the state for the
configuration fmig over the lattice. tTr traces out the
internal legs in the tensor network shown Fig. 3(a), in
which the vertex tensor is given by

Tm
s1s2s3s4 ¼

�
4s1s2 ∶ − s1 − s2 þ s3 þ s4 ¼ m;
0 ∶otherwise; ð11Þ

with sj ¼ �1=2 labeling the spin-1/2 internal degrees of
freedom, whereas the trivial state jΩi ¼ jf∀i∶mi ¼ 0gi is

chosen to be the direct product state of Sz ¼ 0 on every site.
We look into the strange correlator

Cðr; r0Þ ¼ hΩjSþr S−r0 jΨi
hΩjΨi ¼ tTr½T0 � � �T1ðrÞT−1ðr0Þ � � ��

tTrðT0 � � �Þ ;

ð12Þ

which can be expressed as a ratio between two tensor
networks: the denominator is a uniform network of the
tensor T0 on each site, and the numerator is the same
network except for impurity tensors T�1 on site r and r0,
respectively.
The evaluation of the tensor trace in Eq. (12) over the 2D

lattice can be reformulated as a ð1þ 1Þ-dimensional
quantum mechanics problem in terms of the transfer matrix
for each row, which can then be studied by the density
matrix renormalization group method [22,23]. The calcu-
lation is performed on an 128 ×∞ lattice with periodic
boundary condition along both directions. We found that
the strange correlator decays with oscillation [as in
Fig. 3(b)], and its amplitude follows a power-law behavior
jCðr; r0Þj ∼ jr − r0j−η with the exponent η≃ 0.32 [see
Fig. 3(c)], which is consistent with our previous field
theory argument. The last example we will study is the two-
dimensional bosonic SPT phase with Z2 symmetry, which
was first studied in Ref. [24]. The ground-state wave
function of this SPT phase is

jΨi ¼
X
fσig

ð−1ÞNdexp

�
−
β

2

X
hi;ji

σiσj

�
jfσigi; ð13Þ

which is a superposition of all the configurations of the
Ising degree of freedom jfσigi with a factor ð−1Þ asso-
ciated with each closed Ising domain wall (with Nd being
the number of domain wall loops). The trivial state jΩi is
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FIG. 2. (a) The amplitude of strange correlator in the momen-
tum space. The inset shows the Brillouin zone and the high
symmetry points. (b) jCkj−1 exhibits nice linearity around the K
point, establishing the 1=jkj divergence in jCkj.
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FIG. 3 (color online). (a) Tensor network representation of the
2D AKLT state. The red (blue) legs represent the physical
(internal) degrees of freedom. (b) Strange correlator of the 2D
AKLT state measured along the horizontal direction. (c) The
amplitude follows a power-law behavior in the log-log plot. The
final deviation is due to the finite-size effect.
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simply an Ising paramagnet, whose wave function is similar
to Eq. (13) but without the domain wall sign structure
ð−1ÞNd . Compared with Ref. [24], we have added a factor
exp½ð−β=2ÞPhi;jiσiσj� to each Ising configuration to adjust
the spin correlation length.
The strange correlator of the Z2 bosonic SPT phase can

be viewed as a correlation function of a “classical statistical
mechanics model”

Cðr; r0Þ ¼
P

fσigσrσr0 ð−1ÞNde−β
P

hi;jiσiσj

P
fσigð−1ÞNde−β

P
hi;jiσiσj

: ð14Þ

Our goal is to show that this is either a long range or power-
law correlation for arbitrary β. In other words, Eq. (14) is
less likely to disorder than the ordinary 2D Ising model.
This result can be naively understood as follows: the
ordinary 2D Ising model is disordered at high temperature
(small β) due to the proliferation of Ising domain walls. But
in the current model, due to the ð−1Þ sign associated with
each domain wall, the proliferation of domain walls is
suppressed, and thus, eventually the current Ising model
Eq. (14) is not completely disordered even for small β.
This Ising model is dual to a loop model with the

following partition function:

Z ¼
X
C

KLnNd; ð15Þ

where loops are the domain walls of the original Ising
model, K ¼ expð−2βÞ is the loop tension, n ¼ −1 is the
loop fugacity, L is the total length of loops, and Nd is the
total number of closed loops. If the loops do not cross, then
according to Ref. [25], by tuning K there is a phase
transition between a small loop phase (which corresponds
to the Ising ordered phase) for small K and a dense loop
phase for large K. The critical point and the dense loop
phase are both critical with power-law correlations, and
they correspond to two different conformal field theories
with central charges c ¼ −3=5 and −7, respectively. If the
loops are allowed to cross, the dense loop phase is driven to
a different conformal field theory with c ¼ −2, which is
described by free symplectic fermions [26].
The Ising order parameter σi corresponds to the “twist”

operator of the loop model, because σi changes its sign
when it crosses a loop. The twist operator is well-studied at
the critical point of loop models, and in our case with
n ¼ −1, at the critical point between small and dense loop
phases the scaling dimension of the twist operator is −1=10
[27], which is confirmed by our numerical calculation.
The tensor renormalization group method [28,29] has

been applied to loop models in Ref. [30]. Here we use
the same approach to study the twist operator correlations
for the loop model in Eq. (15). For simplicity we forbid
the loops to cross, so the model never develops

antiferromagnetic order even for negative β. For positive
large β, the strange correlator is long ranged; see Fig. 4(a).
As β decreases, the correlator grows and diverges at
the critical point βc ≃ 0.521 with a power-law Cðr; r0Þ ∼
jr − r0j0.199 as shown in Fig. 4(b), which confirms the
theoretical prediction of scaling dimension −1=10 of twist
operator [27]. Theoretically, the entire dense loop phase
(when β < βc) should be controlled by one stable con-
formal field theory fixed point. Our numerical results
suggest that this fixed point is around β ∼ −0.1816; the
power-law behavior of Cðr; r0Þ at this point (Fig. 4) is
consistent with the conclusion of this Letter [31].
We have checked that the ordinary free electron three-

dimensional (3D) topological insulator also gives us a very
clear power-law decay of strange correlator. However, in
general a strongly interacting SRE state in three-
dimensional space can be more complicated, because its
two -dimensional edge can be (1) a gapless ð2þ 1ÞD
conformal field theory, (2) long-range order that sponta-
neously breaks symmetry, or (3) two-dimensional topo-
logical phase [32]. On the basis of our Lorentz
transformation argument, it is possible that hΩjΨi is
mapped to the partition function of a topological phase,
and then in this case the strange correlator Cðr; r0Þmay also
be short ranged. Thus, for 3D SRE states, besides the
strange correlator, we also need another method that
diagnoses the situation when hΩjΨi corresponds to a
topological phase partition function. We will propose a
method to diagnose 3D SRE states in another paper.
In summary, we have proposed a general method to

diagnose 1D and 2D SRE states based on their bulk
ground-state wave functions. We expect our method to
be useful for future numerical studies of SRE states. In
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FIG. 4 (color online). (a) The strange correlator of the SPT state
(in blue) at infinite distance jr − r0j → ∞, in comparison with
that of the trivial state (in red). The SPT strange correlator follows
the power-law behavior (b) at the critical point and (c) in the
dense loop phase.
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Refs. [33–36], it was proposed that interacting fermionic
topological insulators and topological superconductors can
be characterized by the full fermion Green’s function;
Ref. [37] proposed a method to diagnose bosonic SPT
states characterized by group cohomology. The method
proposed in our current Letter is applicable to both
fermionic and bosonic SRE states.
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