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The phase of the transmission amplitude through a mesoscopic system contains information about the
system’s quantum mechanical state and excitations thereof. In the absence of an external magnetic field,
abrupt phase lapses occur between transmission resonances of quantum dots and can be related to the signs
of tunneling matrix elements. They are smeared at finite temperatures. By contrast, we show here that in the
presence of a strong magnetic field, phase lapses represent a genuine interaction effect and may occur also
on resonance. We identify a relevant physical regime where these phase lapses are robust against finite
temperature broadening.
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Probability amplitudes, which are the building blocks of
quantum mechanics, are complex entities. This simple fact
underlines many quantum phenomena in nature. The need
to measure such complex entities is thus of substantial
importance. Such measurements, performed on the trans-
mission amplitude of electrons passing through a quantum
dot (QD), revealed an intriguing phenomenon: contrary to
naive expectations, based on the analogy between a double
barrier and a QD, the transmission phase through a QD was
found to jump abruptly between transmission peaks. The
origin of these so-called phase lapses has been heatedly
debated [1–17]. The explanation relies on the presence of
intradot interactions, which lead to population switching:
an abrupt “swap” of two level occupations as the gate
voltage is varied [13–18]. We also note explanations that
invoke quantum chaos correlations in the QD [19,20].
In the presenceof a strongmagnetic field [21], specifically

in the integer quantum Hall (QH) regime, the aforemen-
tioned picture is likely to change. This has to do with the
chiral motion of electrons along equipotential contours
inside the QD, forming one dimensional edge states [22].
In this regime electrons cannot backscatter off impurities
(unless a counterpropagating edge is nearby). Moreover, the
magnetic-field-acquired phase of the wave functions cannot
be gauged out, rendering the tunneling matrix elements
complex. Do phase lapses occur under such circumstan-
ces too?
We present here a study of a QD operating in the QH

regime with filling factor ν ¼ 2, where the Hall bar
supports two copropagating edge channels [22,23]. One
outer channel (1R, cf. Fig. 1) is set to be part of the arm of a
Mach-Zehnder interferometer (MZI). This facilitates the
measurement of the complex transmission amplitude
through the QD [24]. This is a prototypical system and
a minimal model in which interedge interactions exist; as

far as we know, it has not been investigated before in the
current context.
Here we find the following. (i) Phase lapses may occur

also in this regime of a strong magnetic field, but that the
underlying physics is utterly different from the zero field
case. Importantly, these phase lapses represent a genuine

FIG. 1 (color online). Example of a stability diagram describing
the charge distribution in the quantum dot (QD) in the strong
coupling regime. The pairs of numbers denote the charge in the
outer and inner parts. Inset: A gate-defined QD operating in the
quantum Hall regime (filling factor ν ¼ 2). The QD consists of
two parts. The outer channels (denoted by 1R and 1L, blue solid
lines) form a ring shaped region. Tunneling between this region
and the associated channels outside the QD is denoted by dotted
blue lines. The inner channels (denoted by 2R and 2L, red dashed
lines) define an isolated puddle (or state) tunnel coupled (not
shown) to leads. The two parts of the QD interact electrostatically
(wiggly lines). The transmission amplitude of electrons traveling
along channel 1R towards the dot is measured by embedding it in
one arm of a Mach-Zehnder interferometer (MZI, not shown).
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many-body effect, resulting from the interaction between
the inner and outer edge channels (the inner edge channel
may also be represented by an orbital level or a compress-
ible puddle). (ii) In the standard case, zero transmission and
phase lapses are due to the coherent addition of two or more
transmission amplitudes through the quantum dot. In contra-
distinction, in the strong magnetic field case phase lapses
are due to true dephasing as an internal degree of freedom
fluctuates inside the quantum dot. (iii) For zero magnetic
field phase lapses acquire a width ∼T2 at a finite temperature
T [7]. By contrast, we find that for a realistic, experimentally
relevant physical regime, strong magnetic field phase lapses
are robust against broadening at finite temperatures.
Two gate controlled constrictions in the Hall bar form a

QD (cf. Fig. 1). In the QH regime with ν ¼ 2 the electrons
move inside the QD along two chiral edge modes. We focus
on the transmission of the outer channel. Assuming that the
magnitude of charge fluctuations on the inner mode do not
exceed an electron charge, we treat it as a localized level
whichmay be either occupied or empty. The spatial structure
of the outer edge channel of theQD is important, and inwhat
follows will be taken into account. Tunneling between the
two edge channels is suppressed as these correspond to
oppositely spin polarized modes. The respective couplings of
the outer channel and the inner puddle to the external edge
modes define two time scales, namely, the typical times for
charge fluctuations in the corresponding region. It will be
assumed that during the passage of one electron through
the outer region, the localized level’s occupation remains
unchanged; i.e., each passing electron through the outer region
senses the localized level as anondynamical environment [25].
In addition, we use the inert band approximation and do not
consider the renormalization of the width Γ of the localized
level due to the Coulomb interaction with the outer channel.
Our aim is to calculate the transmission amplitude through

the QD. We first consider the zero temperature quantum
regime, and later will generalize our discussion to finite
temperatures. The effect of the localized level is to provide an
electron passing through the outer region of the QD with
an extra phase, if this level is occupied [26]. Specifically, an
electron occupying the localized level induces a change in
the density of electrons at channels 1R and 1L. Employing
theThomas-Fermi approximation, this change isδρR=LðxÞ ¼
−eVR=LðxÞ=2πℏv, whereVR=LðxÞ is the potential induced in
channel 1R (1L) by the electron occupying the localized
level, whose charge is e < 0; x and v are the spatial
coordinate and velocity of electrons along the channel.
When the localized level is empty, an electron at the
Fermi level εF acquires a phase εFΔx=ℏv while traversing
a distance Δx. In the presence of the potential VR=LðxÞ, the
chemical potential changes locally by −eVR=LðxÞ. This, in
turn, induces an extra phase equal to −e

RΔx
0 dxVR=L=ℏv ¼

2π
RΔx
0 dxδρR=LðxÞ≡ θRðθLÞ, where θR þ θL ¼ 2π. The

last equality reflects the fact that the total screening charge
is e. For symmetric screening between channels 1R and 1L,

θR ¼ θL ¼ π. Similarly, we define the screening phase θ,

which denotes the extra phase accumulated by an electron
while winding once along channels 1R and 1L inside the
QD. The results of our calculation can be formulated using
only the screening phases θ and θR.
The spatial dependence of δρR=LðxÞ and the ensuing

screening phase is important for the analysis of the trans-
mission amplitude. Part or all of the screening takes place
inside the QD. Then, multiple winding trajectories imply
multiple accumulation of the screening phase θ. Clearly,
0 ≤ θ ≤ 2π (0 ≤ θR ≤ 2π), where θ=2π (θR=2π) is the
fraction of the electron charge screened inside the QD
(along channel 1R). Below, we assume that screening does
not take place along channels 2R and 2L (generalization
beyond this assumption is straightforward).
In order to measure the transmission amplitude through

the QD, the latter is embedded in one arm of a MZI
(“upper”). The wave packet of an electron injected into the
MZI is split into two upon arriving at its first junction. The
lower partial wave, jdi, goes directly towards the second
junction and interferes with the part of the upper partial
wave that is transmitted through the QD, jui. The current
through the MZI as measured at one of its drains is
proportional to the probability of an electron to arrive at
that drain. Thus, the current is a function of the trans-
mission phase through the QD.
The scattering matrix of the QD depends on the initial

state of the isolated subsystem consisting of the localized
level and the tunnel-coupled lead(s). Formally, this state is a
Slater determinant built of the eigenstates of that subsys-
tem. Here, we do not include the interaction between the
localized state and the outer edge mode of the QD since it
does not change our picture in a qualitative manner.
However, it is possible to show [27] that this subsystem
can be treated as a two-state system, whose wave function
is

ffiffiffiffiffiffiffiffiffiffiffi
1 − n

p j0i þ ffiffiffi
n

p j1i. Here, jσi is a basis state vector
corresponding to an empty (σ ¼ 0) or occupied (σ ¼ 1)
localized level; an unimportant relative phase factor is
omitted. Because of the fermionic statistics of the electrons,
the probability of the localized level to be occupied, n,
equals its mean occupation. The calculation of n is
elementary [28]. The result is

n ¼
Z

∞

−∞

dE
2π

1

eðE−μÞ=T þ 1

2Γ
ðE − ϵ0Þ2 þ Γ2

; (1)

where μ is the chemical potential of the system,
ϵ0 the eigenenergy of the localized state, and Γ its width
due to the tunnel-coupled leads. At T ¼ 0 one has n ¼
farctan ½ðμ − ϵ0Þ=Γ� þ π=2g=π.
We calculate the transmission amplitude through the QD

employing scattering matrices and taking into account
properly the extra phases θ and θR. If the localized level
is occupied, the transmission amplitude through the QD for
an electron traveling along the channel 1R is
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tQDðϵ; θ; θRÞ ¼
γeiðϵld=lþθRÞ

1 − eiðϵ−θÞ þ γ
: (2)

Here, l ¼ ld þ lu is the circumference of the outer
channel inside the QD, consisting of the lower and upper
lengths. The dimensionless parameter ϵ≡ 2παVg=Δ,
shifting the outer region energy levels, is proportional to
the gate voltage Vg with lever arm α > 0. Δ ¼ 2πℏv=l is
the level spacing in the bare outer region, namely, in the
absence of the inner puddle. The dimensionless parameter γ
reflects the corresponding levels width. The phase θR
accounts for the fact that part of the screening takes place
on channel 1R outside the QD. In a generic case (besides
the cases ld=l ¼ 0; 1 which are unfeasible), and in a
situation where the phases θ and θR do not vary with
energy, the transmission amplitude described by Eq. (2)
does not have phase lapses.
The transmission probability through the MZI is

obtained by employing a pure state density matrix. This
yields

T ¼ Trðρ̂ D̂Þ ¼ 1

4
þ 1

4
½ð1 − nÞjtQDð0Þj2 þ njtQDð1Þj2�

þ 1

2
ℜfe−iϕ½ð1 − nÞtQDð0Þ þ ntQDð1Þ�g

¼ 1

4
þ 1

4
hjtQDj2i þ

1

2
ℜ½e−iϕhtQDi�: (3)

Here ρ̂ is a density matrix constructed from the wave
function of the whole system. It corresponds to the
interfering electron being either scattered by the QD or
transmitted through the lower MZI arm. The operator D̂ is
defined by ðhσj ⊗ hsjÞD̂ðjs0i ⊗ jσ0iÞ ¼ δσσ0=2 for all com-
binations of s; s0 ¼ u; d. The operator D̂ has two function-
alities, namely, it selects only the part of the wave function
that arrives at the measured drain, and taking the trace over
D̂ integrates out the environmental degrees of freedom. The
phase ϕ ¼ 2πΦ=Φ0, where Φ is the magnetic flux enclosed
by the MZI arms and Φ0 the magnetic flux quantum.
The transmission amplitudes tQDð1Þ and tQDð0Þ are abbre-
viations for tQDðϵ; θ; θRÞ and tQDðϵ; 0; 0Þ, respectively
[cf. Eq. (2)]. It should be emphasized that our calculation
is valid in the regime where the time interval between two
consecutive transmitted electrons is sufficient for the inner
puddle to relax to its ground state. In the third line of Eq. (3)
and henceforth, angular brackets h…i denote the average
value of the quantity inside the brackets, calculated with
respect to the probability distribution function

Pð~θ; ~θRÞ ¼
�
n for the phases to be ðθ; θRÞ;
1 − n for the phases to be ð0; 0Þ: (4)

The parameters θ and θR are defined above, and corre-
sponding random variables are denoted by ~θ and ~θR. Thus,
the last equality in Eq. (3) shows that the presence of the

localized state turns the transmission amplitude of the QD
into a random quantity, whose probability distribution
function is determined by n (cf. Ref. [25]).
The two quantities of interest are the transmission phase

through the QD, arghtQDi, and the magnitude of the
coherent oscillations of the current through the MZI,
jhtQDij. These two quantities are measurable experimen-
tally [1,29]. From Eq. (3) we find

arghtQDi ¼ arg ½tQDðϵ; 0; 0Þhζi�; (5a)

jhtQDij ¼ jtQDðϵ; 0; 0Þjjhζij; (5b)

ζðϵ; ~θ; ~θRÞ ¼
1þ γ − eiϵ

1þ γ − eiðϵ−~θÞ e
i~θR : (5c)

Here averages are calculated with respect to the probability
distribution (4), e.g., hζi ¼ 1 − nþ nζðϵ; θ; θRÞ. Clearly,
the presence of the inner puddle induces a change in
the transmission phase such that arg ½tQDðϵ; 0; 0Þ� →
arg ½tQDðϵ; 0; 0Þhζi�. The resulting phase is the sum of
the transmission phase through the “bare” outer region and
argðhζiÞ. Phase lapses can occur only due to the phase
evolution of hζi, since arg ½tQDðϵ; 0; 0Þ� by itself evolves
continuously. Moreover, it is evident that any interesting
physics that may be hidden in hζi will generically be more
pronounced if it happens to occur in between resonances of
the bare outer region—there the phase of tQDðϵ; 0; 0Þ is
practically constant.
A phase lapse occurs if hζi vanishes at a certain Vg.

Equation (5b) shows that this abrupt jump in the phase is
accompanied by complete suppression of the coherent
oscillations in the MZI. Solution of the complex equation
hζi ¼ 0 implies fine tuning of the phases θ and θR such that
arg ½ζðϵ; θ; θRÞ� ¼ π. These phases are determined by the
geometry of the setup, which fixes the way screening is
divided in the system. The geometry can be controlled by
tuning the gates that define the QD.
This very general picture outlined above can be put to

work employing parameters that reflect the sample’s
specific electrostatic features. These parameters determine
the effect of the gate voltage on the inner and outer parts of
the QD, and, hence, the evolution of the transmission
phase. Specifically, we employ a charging energy model,
which leads to a stability diagram of the charge distribution
between the inner and outer parts of the QD, with charges
Ni and No, respectively (see Fig. 1).
Figure 2 depicts the emergence of phase lapses in the

transmission amplitude through the QD and the accom-
panying dephasing of the MZI as a function of ϵ. The
energy level of the outer region and the occupancy of the
inner region [cf. Eq. (1)] are controlled by a common gate
voltage Vg with lever arms α and β through the relations
ϵ ¼ 2παVg=Δ and μ − ϵ0 ¼ βVg þ c (c is a constant),
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respectively. Three representative cases in the strong
coupling regime are shown, in which the occupation
numbers of the QD follow the sequence ðNo;NiÞ→
ðNoþ1;NiÞ→ ðNo;Niþ1Þ→ ðNoþ1;Niþ1Þ. The occur-
rence of a phase lapse, either sharp or smeared, accom-
panied by dephasing of the MZI, is a result of screening,
i.e., the expulsion of an electron from the outer part of the
QD due to population of its inner part. This effectively
results in an average over two transmission amplitudes,
associated with No þ 1 and No electrons in the outer part
[cf. Eqs. (5)]. The (smeared) phase lapse and (almost) full
dephasing occur at the point where the two amplitudes are
(almost) equal in magnitude and have a phase difference of
(almost) π.
In order to extract a physical picture out of this many-

parameter problem, we focus on two important limits,
namely, that of a strong (“S”) and a weak (“W”) coupling
between the two parts of the QD. We examine each of
these limits in view of two interesting scenarios that may
occur vis-à-vis the change in occupancy of the two parts
of thedot as a commongatevoltage isvaried.These scenarios
are (a) ðNo; NiÞ → ðNo; Ni þ 1Þ, and (b) ðNo; NiÞ →
ðNo − 1; Ni þ 1Þ.
We begin with the strong interaction case (S), which

implies θ≃ 2π. In SðaÞ the outer part is positioned in a
valley between resonances, while the inner part is tuned to
be near a resonance peak and eventually crosses this peak
as a function of gate voltage. Under these conditions a
phase lapse occurs if θR ≃ 0; 2π. In SðbÞ there is a

population switching (see e.g., [30]); i.e., both parts of
the QD change their occupation by �1. If θR ≃ π, as
appears to be achieved quite naturally in experiments [24],
then a phase lapse occurs.
We turn now to the weak coupling regime, where θ≃ 0.

ScenarioWðaÞmay occur when the outer channel is not too
close to a resonance, so that its occupation is not affected by
a change in the occupation of the inner puddle. Then
there is no discontinuity (yet possibly a sharp signature) in
the transmission phase. Scenario WðbÞ, which implies a
population switching, can occur only if the outer channel is
close to a resonance. Then (in a generic case) a phase lapse
occurs if θR ≃ 0; 2π, where θR ≃ 0 is more likely in a weak
coupling scenario.
Finite temperatures.— Our analysis so far pertains to the

strictly zero temperature limit. Twomodifications need to be
introduced at finite temperatures. (i) The initial state of the
subsystem composed of the localized level and the tunnel-
coupled lead(s) must be described by amixed densitymatrix
(rather than a wave function). This is easily handled as the
operator D̂ is diagonal in the localized level coordinate σ.
This implies that only the corresponding diagonal elements
of ρ̂ are of importance for the calculation of the transmission
probability through the MZI. Thus, at finite temperatures
one should use Eq. (1). (ii) The electronic beam traveling
along the arms of the MZI has a finite width in energy; i.e.,
the entire interference pattern is a juxtaposition of many
monochromatic beams. Summing over all contributions will
naturally lead to thermal smearing and reduction of the
interference signal. This, however, is not our main focus
here. We note that in scenario SðbÞ above, and when the
entire screening takes place inside the QD (θ ¼ 2π),
each such partial interference would be shifted by a phase
π due to the entry or exit of an electron to the localized level.
When theweights of these two patterns are equal (n ¼ 1=2),
the interference signal is fully dephased. Formally,
htQDðTÞi ¼ hζi R∞

−∞ dEð−∂EfÞtQDðE; 0; 0Þ, where f is the
Fermi function. Thus, an abrupt phase lapse accompanied by
full dephasing will take place at finite temperature as well.
This phase lapse and dephasing will take place on the
background of an interference contrast which decreaseswith
temperature [31] . We note that the physics is less simple
with the other scenarios outlined above. Charge fluctuations
on the localized level will affect electron trajectories with
different winding numbers differently. That would imply, in
turn, that the efficiency of dephasing will vary with energy,
leading to temperature dependent smearing of the phase
lapses.
To conclude, we have studied the transmission amplitude

through a QD operating in the QH regime and have found
that it displays phase lapses due to interactions between
different spin populations inside the dot. Specifically, phase
lapses occur in the presence of quantum or thermal
fluctuations, and are related to full dephasing of the
electrons. We have managed to take into account the

FIG. 2 (color online). Transmission phase through the QD (red
dashed lines, top) and magnitude of coherent oscillations in the
MZI (blue solid lines, bottom) in the strong coupling regime for
symmetric (θR ¼ π, left) and slightly asymmetric [θR ¼ 1.3π
(center) and θR ¼ 0.7π (right)] setups at T ¼ 0. The left
(center, right) plot depicts a sharp (smeared) phase lapse
accompanied by a full (partial) suppression of the coherent
oscillations through the MZI. Other parameters are
ld=l ¼ 1=2, γ ¼ 1=4, ðβ=αÞðΔ=2πΓÞ ¼ 20 and c=Γ ¼ 22π.
The screening phase θ ¼ 2π (left) or θ ¼ 1.7π (center and right)
implies full and almost full screening inside the QD, respectively.
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influence of both types of fluctuations in a unified way, and
have identified the experimentally relevant regime of a
strongly interacting and spatially symmetric setup, where
phase lapses are expected to occur due to population
switching in the valley between transmission resonances.
These phase lapses are not thermally broadened, in contrast
to the zero magnetic field case.
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