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The elastic coupling between plastic events is generally invoked to interpret plastic properties and the
failure of amorphous soft glassy materials. We report an experiment where the emergence of a self-
organized plastic flow is observed well before the failure. For this we impose an homogeneous stress on a
granular material, and measure local deformations for very small strain increments using a light scattering
setup. We observe a nonhomogeneous strain that appears as transient bands of mesoscopic size and a well-
defined orientation, which is different from the angle of the macroscopic frictional shear band that appears
at the failure. The presence and the orientation of those microbands may be understood by considering how
localized plastic reorganizations redistribute stresses in a surrounding continuous elastic medium. We
characterize the length scale and persistence of the structure. The presence of plastic events and the
mesostructure of the plastic flow are compared to numerical simulations.
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Amorphous materials have intermediate mechanical prop-
erties between solids and liquids. At low stress, they behave
as elastic solids, but deform plastically and flow when the
stress increases. These generic behaviors, observed in many
different systems such as concentrated emulsions [1], col-
loidal systems [2], foams [3] or molecular glasses [4] with
apparently universal plastic or rheological laws [5,6], suggest
that such materials may be described using a common
framework [1,7,8]. At the center of those descriptions is
the hypothesis of localized reorganizations. Such events have
been observed in many different studies [3,4,9,10]. Each
event modifies locally the mechanical equilibrium, causing
the surrounding material to deform, and creating internal
stresses. These stresses may then provoke other events,
leading to a succession or avalanche of events [11,12].
The coupling between events, and its relevance to an
avalanchelike cascade scenario for the description of the
final persistent shear band is still an open question [12,13].
Several experimental works show isolated reorganiza-

tions followed by localized flow structures, suggesting the
existence of such coupling. Conclusions remain elusive in
direct observation of colloidal glasses due to the dominance
of thermal activity over the triggered events [9]. In athermal
systems such as granular materials [10] or foams [3], the
steps between the accumulation of individual events and
the appearance of shear bands remain unclear. Very recent
numerical and theoretical results suggest that reorganiza-
tion events may indeed couple in order to produce bands
[12,14–18]. However, the bands observed numerically
resulting from the interacting local events are transient
and correspond to self-healing microcracks, of a different
nature than the final persistent shear bands. To our knowl-
edge such transient microbands forming a clear intermittent
structure have never been reported experimentally.

We present in this Letter the first direct experimental
evidence showing the progressive emergence of co-
operative effects during plastic deformations of an amor-
phous material. For this, we use a very sensitive light
scattering setup to monitor the homogeneous biaxial
compression of a granular material. We then show that
the plastic flow at the early stage of the loading of a
granular material is concentrated along self-healing micro-
bands. The orientation of those transient microbands are
clearly different from the Mohr-Coulomb angle of the final
permanent shear band. We show that the orientations of
those microbands are given by the Eshelby solution [19] for
the long-range stress redistribution induced by local plastic
reorganizations in an elastic material. We also show that the
transient microbands are more prominent as the rupture is
approached.
Experimental setup.—We deform an assembly of glass

spheres by imposing a homogeneous stress with a biaxial
apparatus. We recall here the main features of the setup
described extensively elsewhere [20]: The material (glass
beads, diameter d ¼ 90� 20 μm, volume fraction ≈0.60)
is placed between a preformed latex membrane (size
85 × 55 × 25 mm) and a glass plate. A pump produces a
partial vacuum inside the membrane, creating a confining
stress−σxx. The confined sample is positioned on a metallic
structure [in light gray on Fig. 1(a)]. The glass plate is not
represented on Fig. 1(a) and is at the front. The back
metallic plate and the front glass plate forbid displacement
normal to the x-y plane, ensuring plane-strain conditions.
The bottom of the sample rests on a fixed plate, while the
upper plate (dark gray) is displaced by a step motor. The
stress on the moving plate is −σyy ¼ −σxx þ F=S, where F
is the force measured by a sensor fixed to the plate, and S is
the section of the sample. Although there is probably some
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solid friction between the granular material and the plates,
we do not observe noticeable differences of deformation
between the upper and lower part of the sample. The stress
gradient due to gravity is negligible, and the value of
confining stress is such that cohesion effects and the
crushing of particles are unimportant. The global macro-
scopic deformation is calculated as ϵ ¼ −ϵyy ¼ δ=L with δ
the upper plate displacement and L the sample height [see
left inset of Fig. 2(a)]. The compressions are done at fixed
deformation rate dϵ=dt ¼ 1.1 × 10−5 s−1. We checked that
we were in the quasistatic limit.
Strain heterogeneities are observed using a dynamic light

scattering setup [21]. An expanded 532 nm laser beam
illuminates the material. Because of the coherence of the
light source, interferences occur and a speckle pattern
forms. The image of the front side of the sample is recorded
by a 7360 × 4912 camera. Two different speckle images are
compared using a correlation method explained elsewhere
[21]. Images are subdivided in square zones, and for each
zone we calculate the normalized correlation function

gð1;2ÞI ¼ hI1I2i − hI1ihI2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hI21i − hI1i2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hI22i − hI2i2

p ; ð1Þ

where I1 and I2 are the intensity matrices of a same zone in
two different images, and h� � �i indicates the average over
the zone. Each zone becomes a pixel in a correlation map
[see Fig. 1(b) and the movie in the Supplemental Material
[22]], corresponding to a volume of surface ∼2.1d × 2.1d

in the x-y plane and of depth of few d. The decorrelation of
the scattered light comes from relative bead motions. We
thus measure a combination of affine and nonaffine bead
displacements, and the rotation of nonspherical beads. In
the following, we present maps based on images made at
sample deformations ϵ and ϵþ 3.2 × 10−5, and we note
gIðϵ; rÞ the value of the normalized correlation at com-
pression ϵ and at position r [see Fig. 1(b)].
Plastic flow structure.—Figure 2(a) shows the evolution

of the stress difference σxx − σyy as a function of the
deformation ϵ. At the beginning of the loading, σxx − σyy
increases with ϵ, and then attains a plateau, consistent with
numerous preceding studies, where a granular material was
prepared near the critical state volume fraction [23]. The
stress plateau at ϵc ¼ 4.66% corresponds to the failure of
the sample, confirmed by the correlation map shown in
Fig. 2(a) (rightmost inset). The deformation is dominated
by two symmetric shear bands where gIðϵ; rÞ is low,
corresponding to highly localized deformation. The incli-
nation of the bands is θ≃ 65°, in agreement with a Mohr-
Coulomb analysis θMC ¼ 45þ φc=2≃ 63° for a frictional
material, with φc the internal friction angle [24]. φc ¼
arcsin½ðσyy − σxxÞ=ðσyy þ σxxÞ� at failure (ϵ ¼ ϵc). Those
bands are permanent in the sense that they do not evolve
with ϵ once they appear (see the movie in the Supplemental
Material [22]).

FIG. 1 (color online). (a) Schematic representation of the
biaxial setup. The granular material is enclosed between a latex
membrane and a glass plate (not represented here). A partial
vacuum inside the membrane creates a confining stress −σxx. The
sample is compressed at a fixed velocity along the y axis through
a moving plate (upper plate, dark gray). The light gray back plate
as well as the glass plate at the front forbid displacements along
the z direction ensuring plane-strain conditions. For compression,
−σxx;−σyy > 0. (b) A map of correlation gIðϵ; rÞ with a color
scale. The dashed area of side l≃ 270d is the region of interest
for the spatial correlation calculation.

FIG. 2 (color online). (a) Applied stresses difference versus
deformation (−σxx ¼ 30 kPa). Insets: Left, notations; right: maps
of gIðϵ; rÞ before failure (ϵ ¼ −ϵyy ¼ 0.91%) and after failure
(ϵ ¼ 5.82%). (b) Enlargement of the region of interest of the
deformation map before failure (ϵ ¼ 3.30%) showing the mes-
oscale strain heterogeneities. (c) Correlation function Ψð0Þðϵ; rÞ
of gI at ϵ ¼ 3.30% showing the plastic flow structure in a square
of size l≃ 270d in the r plane.
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Figure 2(b) shows a map of deformation before failure.
The deformation is strongly heterogeneous with a compli-
cated fine structure at small scale. In contrast with the
permanent shear bands observed after failure, this defor-
mation pattern fluctuates strongly during the loading (see
the movie in the Supplemental Material [22]). To inves-
tigate the spatial structure and intermittency of the plastic
flow, we consider the spatial correlation function of
g0I ≡ 1 − gI:

ΨðΔϵÞðϵ; rÞ ¼ hgI 0ðϵþ Δϵ=2; r0ÞgI 0ðϵ − Δϵ=2; rþ r0Þi
− hgI 0ðϵþ Δϵ=2; r0ÞihgI 0ðϵ − Δϵ=2; rþ r0Þi;

ð2Þ

where h� � �i is an average over 100 correlation maps, i.e., a
deformation of 3.2 × 10−3, and over r0, for r0 and rþ r0
covering the region of interest on Fig. 1(b). Figure 2(c)
shows a plot of Ψð0Þðϵ; rÞ. Along two symmetric directions
θ ¼ �θE with θE ≈ 53° the correlation decays slowly with
r [see Fig. 4(a)]. The direction of the anisotropy θE is
almost constant during the loading, and is clearly different
from θMC.
Localized plastic events.—To explain the observed

structure of the plastic flow we first investigate theoretically
the consequences of a single, isolated reorganization some-
where in the granular material. Consider a plastic defor-
mation that relaxes stress within a small volume, but
redistributes it in the surrounding material. We consider
that the surrounding region behaves as a linear elastic
material [25], that we will suppose isotropic with Poisson
ratio ν. Eshelby gave an analytical solution to this 3D
problem [19]: Let e� be the strain tensor of the reorgani-
zation [see Fig. 3(a)]. We suppose e�xy ¼ 0, i.e., that e� is
coaxial to the applied stress tensor and e�zz ¼ e�xz ¼ e�yz ¼ 0
because of the plane-strain configuration, leaving only e�xx
and e�yy as the nonzero strain components. Far from the
rearrangement, the additional stress originating from the
rearrangement in the x-y plane is ~σ, with ~σxx − ~σyy ∝ fðθÞ,
where

fðθÞ ¼ ðe�xx − e�yyÞ
�
−
15

4
cosð4θÞ þ 8ν − 7

4

�

−
9

2
ðe�xx þ e�yyÞ cosð2θÞ: ð3Þ

If ~σxx − ~σyy > 0 the redistributed stress adds to the applied
stress, increasing strain along those directions. Its maxi-
mum occurs for cosð2θ�EÞ¼ð3=10Þðe�yyþe�xxÞ=ðe�yy−e�xxÞ.
In the case of an isovolumic transformation, θ�E ¼ 45°
(mod 90°). Figure 3(b) shows fðθÞ in this case. For a local
rearrangement in agreement with the macroscopic defor-
mation of the sample, i.e., e�xx and e�yy of opposite signs, θ�E
increases (respectively, decreases) for a dilating (respec-
tively, contracting) rearrangement, with extremal values

1
2
cos−1ð�3=10Þ. The largest possible value for θ�E is then

54°, which is close to the value of θE ≈ 53° of the experi-
ment. This reorganization structure has been shown in
numerical studies of molecular glasses [12,14] and cellular
foam [3], but the existence of such an elastic redistribution
in frictional granular material is still an open question.
Indeed, the existence of an elastic limit for such a system is
still a matter of debate [25]. We performed numerical
bidimensional discrete element method simulations of a
biaxial compression test [see Fig. 3(c) for boundary
conditions]. Figure 3(d) shows results from a simulation
of N ¼ 2562 grains, using a visualization method inspired
by the experimental technique: Positions of the grains are
recorded at strain increments of δϵ ¼ 10−5. Two successive
system states are compared, and for each grain, a local
strain (average relative change in distance to its neighbors)
is calculated. Those grains whose local strain is large are
dark. We can generate a plastic event in the simulation by
softening a small number of grains in the sample [see
Fig. 3(e)] and we obtain a local deformation in accordance
with the analytical solution of Fig. 3(b). Figure 3(d) shows
that such local events also occur during the compression of
the granular material.

FIG. 3 (color online). (a) Schematic representation of a local
plastic event specifying the tensors e� (linked to the deformation
of the inclusion) and ~σ (stress redistribution in the surrounding
medium due to the plastic event). (b) Angular distribution of
~σxx − ~σyy ∝ fðθÞ in the case of an isovolumic transformation of
the inclusion (ν ¼ 0.33). (c) Boundary conditions of the numeri-
cal simulations. (d) Example of a deformation map from
numerical simulation displaying a local event and microbands.
(e) Synthetic local reorganization obtained numerically by a
modification of the elastic constants of few grains.
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Coupling between localized events and plastic flow
structure.—Along the directions where ~σxx − ~σyy is pos-
itive, the additional stress has the same sign as the applied
stress, possibly triggering new reorganizations. We there-
fore expect deformation to be organized in microbands
whose orientations are given by the Eshelby solution. This
structure is visible in the numerical experiments where very
transient localized lines inclined at θ ≈�45° are present
[see Fig. 3(d)]. The resulting images display the same
phenomenology as the experimental results: Well before
failure, deformation is concentrated in short diagonal
microbands (probably similar to those reported in other
studies [18,26,27]), and at failure, a shear band appears (not
shown here). The agreement between 2D simulation and
3D experiments supports our plane-strain hypothesis.
Spatial and temporal correlations.—Coming back to our

experimental data, we focus on the evolution of the
anisotropic part of ΨðΔϵÞðϵ; r; θÞ ¼ ΨðΔϵÞðϵ; rÞ during the
loading, which we define as

χðΔϵÞðϵ; rÞ ¼ 1

2
½ΨðΔϵÞðϵ; r; θEÞ þΨðΔϵÞðϵ; r;−θEÞ�

−ΨðΔϵÞ
iso ðϵ; rÞ ð4Þ

with ΨðΔϵÞ
iso ðϵ; rÞ ¼ 1

2π

R
2π
0 ΨðΔϵÞðϵ; r; θÞdθ, the isotropic part

ofΨðΔϵÞ. Figure 4(b) shows the evolution of χð0Þðϵ; rÞ in the
function of r for different values of ϵ. We observe that the
anisotropic part of the correlation function increases as the
loading increases. We consider a twofold characterization
of χð0Þ. First, the integral AðϵÞ ¼ R r¼l=2

r¼0 χð0Þðϵ; rÞdr esti-
mates the strength of the anisotropy. Second, the character-
istic distance ξðϵÞ at which the correlation is maximum
ð∂χð0Þ=∂rÞðϵ; ξðϵÞÞ ¼ 0 is computed using a quadratic fit
[plain line of Fig. 4(b)] of the experimental curves near the
maximum. Figure 4(c) shows that both the integral A and
the characteristic length ξ=d of the anisotropy increase as
the loading progresses toward rupture. Finally, the transient
nature of the observed structure can be shown by consid-
ering the scale of deformation at which the plastic flow
persists. For this, we considered the evolution of
ðχðΔϵÞ=χð0ÞÞðϵ; ξðϵÞÞ with Δϵ at a given ϵ. Figure 4(d)
shows that close to rupture, for ϵ ¼ 4.4% and
ξðϵ ¼ 4.4%Þ ¼ 85d, the deformation persists after a defor-
mation increment Δϵ ≈ 0.3%. On the contrary, further from
the failure (ϵ ¼ 3.3%), the deformation decays over a
typical increment of deformation Δϵ ≈ 0.02%.
From the structure of the plastic flow, a characteristic

length ξ revealing the cooperativity of the fluctuation of
plastic flow emerges. The values of ξ are in quantitative
agreement with numerical simulations of the granular
material [26] where fluctuations coupled on distance
∼ð10−40Þd are reported. Theoretically [30] a nonlocal
rule for the mean plastic flow is expected to emerge from
those fluctuations. Such nonlocal flow rules have been
proposed to describe granular plastic flow [31]. Figure 4(c)

shows the expected evolution of the cooperativity length
[28] proposed in [29] during the loading. The cooperativity
length of the mean flow is smaller than ξ. This is probably
due to the coarse-graining process described in [30].
Conclusion.—In summary, a careful experimental study

of the plastic flow of an athermal amorphous material
reveals a mesoscopic structure of the strain since the early
stage of the loading process: Deformation concentrates in
transient short microbands of well-defined orientation. We
connect those orientations with the elastic long-range stress
redistribution due to localized plastic reorganizations. We
show an increasing characteristic length and persistence
during the loading. However, the relationship between
these transient microbands and the final permanent fric-
tional shear bands is more complex than the description of a
final persistent shear-band formation as a mere growing
cascade of local rearrangements. The final shear band does
not arise from a coalescence of microbands, nor is it
initiated by a single microband that reaches the boundary
and becomes locked. Instead, as the movie in the
Supplemental Material [22] shows, the two types of
deformation, oriented in two different directions, coexist
near failure. We observe a hierarchical structure with a
mesoscopic pattern embedded in a large scale shear band.

FIG. 4 (color online). (a) Ψð0Þ as function of r for ϵ ¼ 2.7%,
showing a fast decay at a short distance (r=d≲ 10) followed by a
slow decay. (b) χð0Þðϵ; rÞ versus r=d for increasing values of
deformations ϵ ¼ 1.6% (open triangle), ϵ ¼ 2.3% (filled square),
ϵ ¼ 3.7% (open square), ϵ ¼ 4.0% (filled circle), ϵ ¼ 4.4% (open
circle). Lines are quadratic fits around maximum. (c) Length ξ=d
(filled square) and mean amplitude A (open circle) (see text) as
functions of the deformation ϵ. Error bars are given by the
uncertainty of the quadratic fit of χð0Þ around maximum. The
black dotted line indicates the deformation at rupture ϵc ≈ 4.66%.
The plain line is the cooperative length [28] expected from the
nonlocal flow rule of granular material [29]. (d) Relaxation of
ðχðΔϵÞ=χð0ÞÞðϵ; ξðϵÞÞ as a function of the deformation increment
Δϵ for ξðϵ ¼ 3.3%Þ ¼ 33d (filled circle), ξðϵ ¼ 4.0%Þ ¼ 70d
(open square), and ξðϵ ¼ 4.4%Þ ¼ 85d (filled square).
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The modelization of the final persistent shear band needs to
describe the complex interaction between the microbands
and the larger scale localization. The careful characteriza-
tion of the birth of the permanent shear band is a work in
progress.

This work has been supported by ANR (Grant No. 2010-
BLAN-0927-01) and Région Bretagne (MideMade). We
thank P. Chasle, H. Orain, J.-C. Sangleboeuf, P. Bésuelle
and C. Viggiani for help with the biaxial apparatus, and
GDR Mephy for fruitful discussions.

[1] J. Goyon, A. Colin, G. Ovarlez, A. Ajdari, and L. Bocquet,
Nature (London) 454, 84 (2008).

[2] R. Besseling, L. Isa, P. Ballesta, G. Petekidis, M. E. Cates,
and W. C. K. Poon, Phys. Rev. Lett. 105 268301 (2010).

[3] A. Kabla, J. Scheibert, and G. Debregeas, J. Fluid Mech.
587, 45 (2007).

[4] A. Tanguy, F. Leonforte, and J.-L. Barrat, Eur. Phys. J. E 20,
355 (2006).

[5] P. Sollich, F. Lequeux, P. Hebraud, and M. E. Cates, Phys.
Rev. Lett. 78, 2020 (1997).

[6] C. Derec, A. Ajdari, and F. Lequeux, Eur. Phys. J. E 4, 355
(2001).

[7] G. Katgert, B. P. Tighe, M. E. Möbius, and M. van Hecke,
Europhys. Lett. 90, 54002 (2010).

[8] V. B. Nguyen, T. Darnige, A. Bruand, and E. Clement, Phys.
Rev. Lett. 107,138303 (2011).

[9] P. Schall, D. A. Weitz, and F. Spaepen, Science 318, 1895
(2007).

[10] A. Amon, V. B. Nguyen, A. Bruand, J. Crassous, and E.
Clément, Phys. Rev. Lett. 108, 135502 (2012).

[11] M. L. Falk, and J. S. Langer, Phys. Rev. E 57, 7192
(1998).

[12] C. E. Maloney and A. Lemaître, Phys. Rev. E 74, 016118
(2006).

[13] K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl, Nat. Phys. 7, 554
(2011).

[14] M. Tsamados, A. Tanguy, F. Léonforte, and J.-L. Barrat,
Eur. Phys. J. E 26, 283 (2008).

[15] S. M. Talamali et al., C. R. Méc 340, 275 (2011).
[16] K. Martens, L. Bocquet, and J.-L. Barrat, Soft Matter 8,

4197 (2012).
[17] R. Dasgupta, H. G. Hentschel, and I. Procaccia, Phys. Rev.

Lett. 109 255502 (2012).
[18] F. Gimbert, D. Amitrano, and J. Weiss, Europhys. Lett. 104,

46001 (2013).
[19] J. D. Eshelby, Proc. R. Soc. A 241, 376 (1957).
[20] A. Le Bouil, A. Amon, J.-C. Sangleboeuf, H. Orain, P.

Bésuelle, G. Viggiani, P. Chasle, and J. Crassous, Granular
Matter 16, 1 (2014).

[21] M. Erpelding, A. Amon, and J. Crassous, Phys. Rev. E 78,
046104 (2008).

[22] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.112.246001 for the
successive maps of incremental deformation during the
loading shown in Fig. 2(a). The value of the imposed strain
is indicated in percent. The color scale is the same as
Fig. 1(b).

[23] Critical State Soil Mechanics, edited by A. N. Schofield,
and C. P. Wroth (McGraw-Hill, New York, 1968)

[24] Statics and Kinematics of Granular Materials, edited by R.
M. Nedderman (Cambridge University Press, Cambridge,
1992).

[25] H. A. Makse, N. Gand, D. L. Johnson, and L. Schwartz,
Phys. Rev. E 70, 061302 (2004).

[26] M. R. Kuhn, Mech. Mater. 31, 407 (1999).
[27] S. A. Hall, D. Muir Wood, E. Ibraim, and G. Viggiani,

Granular Matter 12 1 (2010).
[28] The cooperativity length is [29] ζ ¼ Ad=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μc − μ

p
, with

A ¼ 0.48. We define here μ from the Mohr-Coulomb
analysis: μ ¼ tanðφÞ with φ ¼ arcsin½ðσyy − σxxÞ=
ðσyy þ σxxÞ�, and μc with the value of μ at failure.

[29] D. L. Henann and K. Kamrin, Proc. Natl. Acad. Sci. U.S.A.
110, 6730 (2013).

[30] L. Bocquet, A. Colin, and A. Ajdari, Phys. Rev. Lett. 103
036001 (2009).

[31] K. Kamrin, and G. Koval, Phys. Rev. Lett. 108 178301
(2012).

PRL 112, 246001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
20 JUNE 2014

246001-5

http://dx.doi.org/10.1038/nature07026
http://dx.doi.org/10.1103/PhysRevLett.105.268301
http://dx.doi.org/10.1017/S0022112007007276
http://dx.doi.org/10.1017/S0022112007007276
http://dx.doi.org/10.1140/epje/i2006-10024-2
http://dx.doi.org/10.1140/epje/i2006-10024-2
http://dx.doi.org/10.1103/PhysRevLett.78.2020
http://dx.doi.org/10.1103/PhysRevLett.78.2020
http://dx.doi.org/10.1007/s101890170118
http://dx.doi.org/10.1007/s101890170118
http://dx.doi.org/10.1209/0295-5075/90/54002
http://dx.doi.org/10.1103/PhysRevLett.107.138303
http://dx.doi.org/10.1103/PhysRevLett.107.138303
http://dx.doi.org/10.1126/science.1149308
http://dx.doi.org/10.1126/science.1149308
http://dx.doi.org/10.1103/PhysRevLett.108.135502
http://dx.doi.org/10.1103/PhysRevE.57.7192
http://dx.doi.org/10.1103/PhysRevE.57.7192
http://dx.doi.org/10.1103/PhysRevE.74.016118
http://dx.doi.org/10.1103/PhysRevE.74.016118
http://dx.doi.org/10.1038/nphys1957
http://dx.doi.org/10.1038/nphys1957
http://dx.doi.org/10.1140/epje/i2007-10324-y
http://dx.doi.org/10.1016/j.crme.2012.02.010
http://dx.doi.org/10.1039/c2sm07090a
http://dx.doi.org/10.1039/c2sm07090a
http://dx.doi.org/10.1103/PhysRevLett.109.255502
http://dx.doi.org/10.1103/PhysRevLett.109.255502
http://dx.doi.org/10.1209/0295-5075/104/46001
http://dx.doi.org/10.1209/0295-5075/104/46001
http://dx.doi.org/10.1098/rspa.1957.0133
http://dx.doi.org/10.1007/s10035-013-0477-x
http://dx.doi.org/10.1007/s10035-013-0477-x
http://dx.doi.org/10.1103/PhysRevE.78.046104
http://dx.doi.org/10.1103/PhysRevE.78.046104
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.246001
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.246001
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.246001
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.246001
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.246001
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.246001
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.246001
http://dx.doi.org/10.1103/PhysRevE.70.061302
http://dx.doi.org/10.1016/S0167-6636(99)00010-1
http://dx.doi.org/10.1007/s10035-009-0155-1
http://dx.doi.org/10.1073/pnas.1219153110
http://dx.doi.org/10.1073/pnas.1219153110
http://dx.doi.org/10.1103/PhysRevLett.103.036001
http://dx.doi.org/10.1103/PhysRevLett.103.036001
http://dx.doi.org/10.1103/PhysRevLett.108.178301
http://dx.doi.org/10.1103/PhysRevLett.108.178301

