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The observed value of the Higgs boson mass indicates that the Higgs potential becomes small and flat at
the scale around 10'7 GeV. Having this fact in mind, we reconsider the Higgs inflation scenario proposed
by Bezrukov and Shaposhnikov. It turns out that the nonminimal coupling & of the Higgs squared to the
Ricci scalar can be smaller than 10. For example, £ = 7 corresponds to the tensor-to-scalar ratio r = 0.2,
which is consistent with the recent observation by BICEP2.
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The observed value of the Higgs boson mass
125.9 + 0.4 GeV [1] indicates that the standard model
(SM) Higgs potential becomes small and flat at the scale
around 10'7 GeV; see, e.g., [2-9] for latest analyses [10].
See Fig. 1 for the Higgs potential around that scale for
various values of the top quark mass [11]. We see that
by tuning the top quark mass, we can make the first
derivative at the inflection point arbitrarily small as shown
by the blue (center) line. Note that the required tuning
of the top quark mass is rather strict. The values of M,
are given to show the amount of tuning and should not be
taken literally [17]. There are several arguments that this
tuning is required by a principle such as the multiple point
principle [20-22], the maximum entropy principle [23,24],
the classical conformality [25-32], and the asymptotic
safety [33].

It is known that this inflection point cannot be used to
achieve a successful inflation [34-36]. Slow-roll condition
lnv| <1 restricts the field value to be very close to the
inflection point. To earn a sufficient e folding N, = 60
within this range of ¢,, the first derivative at the inflection
point must be very small, and hence cannot yield the right
amount of the amplitude A; x V, /ey at ¢,.

In Ref. [35], we have discussed a possibility that a new
physics, such as string theory, modifies the Higgs potential
above the scale A ~ 10'” GeV. In this Letter, we pursue
another possibility that the nonminimal coupling of the
Higgs squared to the Ricci scalar, &p*R, leads to a
successful inflection point inflation.

The main differences from the ordinary Higgs inflation
scenario [39-43] are the following two points [44]: (i) The
e folding is earned in passing the inflection point, and
hence the relation ey, ~ 1/N2 no longer holds. Therefore,
the scalar-to-tensor ratio r = 16¢y, can be sizable to match
the recent BICEP2 result [49]:

r=0233¢ (1
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at the 68% C.L. (ii) £ can be smaller than 10, since the
Higgs quartic coupling 4 is small at ¢,, due to the tuning
mentioned above.

We start from the same Lagrangian as the ordinary Higgs
inflation [39,41,42,50]. The potential in the Einstein frame
can be obtained from the effective potential

@ 2

in the flat space, by setting ¢ = ¢,, with
h
Y=,
"+ e M3

where £ is the Higgs field in the Jordan frame [53].

The running coupling A(x) has a minimum at
Umin ~ 1017718 GeV, depending on the Higgs boson mass
[2-9,54]. Around the minimum, A(x) can be expanded as
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FIG. 1 (color online). Standard model Higgs potential for the
Higgs boson mass 125.6 GeV.
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FIG. 2 (color online).
for £ = 10 in a linear-linear plot.

where 3, = 0.6 in the SM [35]. The terms proportional to 33
and higher are small in the region of our interest, and we will
neglect them hereafter. The value of 4,,;, depends on the top
quark mass, and we can set it arbitrarily small by tuning the
top quark mass within the current experimental bound.
For the potential V(¢) to be monotonically increasing
around the inflection point, it is necessary and sufficient that
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Amin > ,16:=( 7™ 1076 (5)
The equality holds when the potential has a plateau. That is,
when we put /1min = /16’ the pOint Pinflection = e_l/4iumin =
0.84min becomes a saddle point with vanishing first and
second derivatives [55].

We set the value of A,,;, slightly larger than 4. to realize
an inflection point inflation, while keeping the potential
above @infeciion Sufficiently small by the introduction of &
in order to evade the problem described above. The three
cases A > 4., 1 =14,, and 1 < 4. correspond to the red
(upper), blue (middle), and green (lower) curves in Fig. 1,
respectively. An important point here is that the value of ¢,
in Eq. (3) is saturated to Mp/+/& for large values of h
(> Mp/+/&), and therefore the potential does not grow
rapidly. In order for this saturation to work to avoid too
large 7y, we need @infiection ~ MP/\/E’ thatis, & ~ M%’//"Iznin'

As concrete examples, we show our results for several
benchmark points with the parameter choice £ = 0, 3, 10,
100, and 1000 with A, = 1.014., f, = 0.6, and p;, =
Mp/+/10 in the left panel in Fig. 2; the same figure is
drawn in a linear plot for £ = 10 in the right panel.

To fit the cosmological data, we can, e.g., take
h, = 0.896Mp, Apin = 1.014,, pmin = 0.37TMp, E=7 to
get r=16ey(h,) =0.19, N, =58, V(g )/ey(h,) =
5.0 x 1077 and n,(h,) = 0.955, where

_ Mj @dv(ﬁl’h) :
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Left: Inflaton potential for & = 0, 3, 10, 100, and 1000 from above to below in a log-linear plot. Right: the same
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For the same parameters, the Einstein-frame time evolution
of the Higgs field A is plotted in Fig. 3. We see that
substantial time is spent around the inflection point.

Once the tensor-to-scalar ratio is fixed to be r=10.2,
the slow-roll parameter becomes ¢y (h,) = 0.013, and the
amplitude A; « V(¢ )/ey(h,) fixes the potential height
V(e )'/* =2 x 10'® GeV. The potential height is deter-
mined in our case to be V(¢ ) = A(¢;, )M} /&, which is
the same as the Higgs inflation. The difference is the value
of A(@p.) = Amin = 4. ~ 107° that allows us to take & < 10.

In this Letter, we have matched the renormalization
scale in the Einstein frame, as in Eq. (3). If we instead
match it in the Jordan frame [56], i.e., if we set ¢ = & in
Eq. (2), we obtain the chaotic inflation at & > Mp/+/E.
In this region, the canonically normalized field is } =
V6MpIn(hMp/+/Eu?,,) in the Einstein frame. The poten-
tial for 7 becomes quadratic:

V:ﬂ'minM‘}’ 1 ﬁQM%’ 52

TG D

®)

We see that by taking & ~ 100, we get the right amount of
the inflaton mass ~10"® GeV.

Finally, we comment on the unitarity issue in the Higgs
inflation due to the large nonminimal coupling, which
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FIG. 3 (color online). 4 vs t in the Einstein frame in Planck

units.
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requires a new physics above the scale A ~ Mp/& in order
to cure the scattering being strongly coupled on the
electroweak vacuum (p < Mp/+/E) [59-64]. It is an
implicit assumption of the Higgs inflation that such an
extension does not affect the result qualitatively, that is,
the Wilson coefficients of the higher order terms are
sufficiently smaller than 1/£. Note that our £ is greatly
reduced from the value & ~ 10° in the ordinary scenario.
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Note added—After submission of this Letter, there
appeared an article treating a similar subject [65], which
is consistent with our result [66].
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