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The observed value of the Higgs boson mass indicates that the Higgs potential becomes small and flat at
the scale around 1017 GeV. Having this fact in mind, we reconsider the Higgs inflation scenario proposed
by Bezrukov and Shaposhnikov. It turns out that the nonminimal coupling ξ of the Higgs squared to the
Ricci scalar can be smaller than 10. For example, ξ ¼ 7 corresponds to the tensor-to-scalar ratio r≃ 0.2,
which is consistent with the recent observation by BICEP2.
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The observed value of the Higgs boson mass
125.9� 0.4 GeV [1] indicates that the standard model
(SM) Higgs potential becomes small and flat at the scale
around 1017 GeV; see, e.g., [2–9] for latest analyses [10].
See Fig. 1 for the Higgs potential around that scale for
various values of the top quark mass [11]. We see that
by tuning the top quark mass, we can make the first
derivative at the inflection point arbitrarily small as shown
by the blue (center) line. Note that the required tuning
of the top quark mass is rather strict. The values of Mt
are given to show the amount of tuning and should not be
taken literally [17]. There are several arguments that this
tuning is required by a principle such as the multiple point
principle [20–22], the maximum entropy principle [23,24],
the classical conformality [25–32], and the asymptotic
safety [33].
It is known that this inflection point cannot be used to

achieve a successful inflation [34–36]. Slow-roll condition
jηV j≲ 1 restricts the field value to be very close to the
inflection point. To earn a sufficient e folding N� ≃ 60
within this range of φ�, the first derivative at the inflection
point must be very small, and hence cannot yield the right
amount of the amplitude As ∝ V�=ϵV at φ�.
In Ref. [35], we have discussed a possibility that a new

physics, such as string theory, modifies the Higgs potential
above the scale Λ ∼ 1017 GeV. In this Letter, we pursue
another possibility that the nonminimal coupling of the
Higgs squared to the Ricci scalar, ξφ2R, leads to a
successful inflection point inflation.
The main differences from the ordinary Higgs inflation

scenario [39–43] are the following two points [44]: (i) The
e folding is earned in passing the inflection point, and
hence the relation ϵV ∼ 1=N2� no longer holds. Therefore,
the scalar-to-tensor ratio r ¼ 16ϵV can be sizable to match
the recent BICEP2 result [49]:

r ¼ 0.2þ0.07
−0.05 (1)

at the 68% C.L. (ii) ξ can be smaller than 10, since the
Higgs quartic coupling λ is small at φ�, due to the tuning
mentioned above.
We start from the same Lagrangian as the ordinary Higgs

inflation [39,41,42,50]. The potential in the Einstein frame
can be obtained from the effective potential

VðφÞ ¼ λðφÞ
4

φ4 (2)

in the flat space, by setting φ ¼ φh with

φh≔
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξh2=M2
P

p ; (3)

where h is the Higgs field in the Jordan frame [53].
The running coupling λðμÞ has a minimum at

μmin ∼ 1017–18 GeV, depending on the Higgs boson mass
[2–9,54]. Around the minimum, λðμÞ can be expanded as

λðμÞ ¼ λmin þ
β2

ð16π2Þ2
�

ln
μ
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�
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þ β3
ð16π2Þ3
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FIG. 1 (color online). Standard model Higgs potential for the
Higgs boson mass 125.6 GeV.
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where β2 ≃ 0.6 in the SM [35]. The terms proportional to β3
and higher are small in the region of our interest, andwewill
neglect them hereafter. The value of λmin depends on the top
quark mass, and we can set it arbitrarily small by tuning the
top quark mass within the current experimental bound.
For the potential VðφÞ to be monotonically increasing

around the inflection point, it is necessary and sufficient that

λmin ≥ λc≔
β2

ð64π2Þ2 ∼ 10−6: (5)

The equality holds when the potential has a plateau. That is,
when we put λmin ¼ λc, the point φinflection ¼ e−1=4μmin ≃
0.8μmin becomes a saddle point with vanishing first and
second derivatives [55].
We set the value of λmin slightly larger than λc to realize

an inflection point inflation, while keeping the potential
above φinflection sufficiently small by the introduction of ξ
in order to evade the problem described above. The three
cases λ > λc, λ ¼ λc, and λ < λc correspond to the red
(upper), blue (middle), and green (lower) curves in Fig. 1,
respectively. An important point here is that the value of φh
in Eq. (3) is saturated to MP=

ffiffiffi

ξ
p

for large values of h
(≫ MP=

ffiffiffi

ξ
p

), and therefore the potential does not grow
rapidly. In order for this saturation to work to avoid too
large ηV , we need φinflection ∼MP=

ffiffiffi

ξ
p

, that is, ξ ∼M2
P=μ

2
min.

As concrete examples, we show our results for several
benchmark points with the parameter choice ξ ¼ 0, 3, 10,
100, and 1000 with λmin ¼ 1.01λc, β2 ¼ 0.6, and μmin ¼
MP=

ffiffiffiffiffi

10
p

in the left panel in Fig. 2; the same figure is
drawn in a linear plot for ξ ¼ 10 in the right panel.
To fit the cosmological data, we can, e.g., take

h� ¼ 0.896MP, λmin ¼ 1.01λc, μmin ¼ 0.37MP, ξ ¼ 7 to
get r ¼ 16ϵVðh�Þ ¼ 0.19, N� ¼ 58, Vðφh� Þ=ϵVðh�Þ ¼
5.0 × 10−7 and nsðh�Þ ¼ 0.955, where

ϵV ¼ M2
P

2VðφhÞ2
�

dh
dχ

dVðφhÞ
dh

�

2

;

ηV ¼ M2
P

VðφhÞ
dh
dχ

d
dh

�

dh
dχ

dVðφhÞ
dh

�

;

(6)

with

dχ
dh

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξð1þ 6ξÞh2=M2
P

p

1þ ξh2=M2
P

: (7)

For the same parameters, the Einstein-frame time evolution
of the Higgs field h is plotted in Fig. 3. We see that
substantial time is spent around the inflection point.
Once the tensor-to-scalar ratio is fixed to be r≃ 0.2,

the slow-roll parameter becomes ϵVðh�Þ≃ 0.013, and the
amplitude As ∝ Vðφh� Þ=ϵVðh�Þ fixes the potential height
Vðφh�Þ1=4 ≃ 2 × 1016 GeV. The potential height is deter-
mined in our case to be Vðφh�Þ≃ λðφh�ÞM4

P=ξ
2, which is

the same as the Higgs inflation. The difference is the value
of λðφh�Þ≃ λmin ≃ λc ∼ 10−6 that allows us to take ξ≲ 10.
In this Letter, we have matched the renormalization

scale in the Einstein frame, as in Eq. (3). If we instead
match it in the Jordan frame [56], i.e., if we set φ ¼ h in
Eq. (2), we obtain the chaotic inflation at h ≫ MP=

ffiffiffi

ξ
p

.
In this region, the canonically normalized field is χ̂ ≃
ffiffiffi

6
p

MP lnðhMP=
ffiffiffi

ξ
p

μ2minÞ in the Einstein frame. The poten-
tial for χ̂ becomes quadratic:

V ≃ λminM4
P

4ξ2
þ 1

2

β2M2
P

48ξ2ð16π2Þ2 χ̂
2: (8)

We see that by taking ξ ∼ 100, we get the right amount of
the inflaton mass ∼1013 GeV.
Finally, we comment on the unitarity issue in the Higgs

inflation due to the large nonminimal coupling, which
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FIG. 2 (color online). Left: Inflaton potential for ξ ¼ 0, 3, 10, 100, and 1000 from above to below in a log-linear plot. Right: the same
for ξ ¼ 10 in a linear-linear plot.
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FIG. 3 (color online). h vs t in the Einstein frame in Planck
units.

PRL 112, 241301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
20 JUNE 2014

241301-2



requires a new physics above the scale Λ ∼MP=ξ in order
to cure the scattering being strongly coupled on the
electroweak vacuum (φ ≪ MP=

ffiffiffi

ξ
p

) [59–64]. It is an
implicit assumption of the Higgs inflation that such an
extension does not affect the result qualitatively, that is,
the Wilson coefficients of the higher order terms are
sufficiently smaller than 1=ξ. Note that our ξ is greatly
reduced from the value ξ ∼ 105 in the ordinary scenario.
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