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Metadynamics is a versatile and capable enhanced sampling method for the computational study of soft
matter materials and biomolecular systems. However, over a decade of application and several attempts to
give this adaptive umbrella sampling method a firm theoretical grounding prove that a rigorous
convergence analysis is elusive. This Letter describes such an analysis, demonstrating that well-tempered
metadynamics converges to the final state it was designed to reach and, therefore, that the simple formulas
currently used to interpret the final converged state of tempered metadynamics are correct and exact. The
results do not rely on any assumption that the collective variable dynamics are effectively Brownian or any
idealizations of the hill deposition function; instead, they suggest new, more permissive criteria for the
method to be well behaved. The results apply to tempered metadynamics with or without adaptive
Gaussians or boundary corrections and whether the bias is stored approximately on a grid or exactly.
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Metadynamics [1–4] accelerates computational simula-
tions of molecular dynamics [5] along a set of several
otherwise slow collective variables (CVs) characterized
by the presence of multiple metastable states, such as solid
lattice order parameters [6–8], molecular dihedral angles
[1,9], or protein-ligand binding coordinates [10–12], to
enable the calculation of free energy surfaces that would
be prohibitively expensive to calculate using unbiased
simulations. It accelerates sampling by iteratively construct-
ing and applying a bias potential to offset free energy barriers
along the CVs [13]; the iterative construction rule is to add
smooth hills to the bias around each successively sampled
point to reduce reexploration of already-sampled CV space
and thereby enhance escape from local minima [1,14,15].
It is one of a diverse set of adaptive biasing methods for
efficient calculation of free energy surfaces (see, e.g.,
Refs. [13,15–23]) that also includes the widely applied
Wang-Landau scheme [24–28]. Though conceived for the
study of soft matter, like the Wang-Landau scheme its
strategy applies to the efficient sampling of any multimodal
distribution in which the most pernicious multimodality can
be characterized in terms of just a few variables [29–32].
Though metadynamics is widely used, open questions

about its convergence properties have cast doubt on the
accuracy of its results and made innovations appear difficult
to justify in the minds of some and have impeded its
adoption in other fields [19,22,23,31–40]. The most power-
ful extant convergence results, due to Bussi et al. [34] and
Dickson [39], relied on idealizing assumptions that meta-
dynamics updates continuously in time and that the CV
dynamics is effectively Brownian. Bussi et al. showed that
metadynamics as originally formulated does not lead to a

single predictable bias under those assumptions—instead,
the bias fluctuates indefinitely. Dickson showed that an
analytically convenient approximation of the variant well-
tempered metadynamics (WTMetaD) does converge under
those assumptions, but for this approximation the bias
converges to a mollified version of the desired end state—
leaving roughness in the final sampling distribution. From
another branch of physics, work on Wang-Landau-like
methods [41–43] indirectly suggests that WTMetaD using
discrete CVs, hills that bias one CV state at a time, and
finite time between updates could converge as expected
under fairly general CV dynamics—but again, this speaks
little to practical metadynamics.
As yet there has been no rigorous demonstration that

metadynamics as actually implemented [44–46], with
finite-width hills deposited at finite time intervals according
to a sampling dynamics with imperfect separation of time
scales, is a stochastic process with a single end state that is
always reached given enough time—or, if it is, that the end
state reached is the intended one, as Dickson suggested
might not be the case [22,39]. This Letter provides the steps
in such a demonstration and the essential technical con-
straints that arise along the way.
Our work does not rely on assumptions of effective

Brownian dynamics, continuous time updating, or ideal-
izations of the hill function. The demonstration treats the
method as implemented by applying reliable stochastic
mathematics [47]. The remaining body of this Letter
describes the physical argument of the proof unburdened
by technical mathematics; see the references for technical
details. The argument requires understanding a key aux-
iliary time scale, how the evolution of the bias in that time
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scale approaches an ordinary differential equation (ODE),
the stable state for that ODE, and why the ODE converges
to that stable state. It is a precise argument under fairly
general conditions that are specified later in the Letter and
does not contradict practical experience: though formal
convergence is robust, the actual time to convergence may
remain sensitive to system details, especially the presence
of slow variables orthogonal to the CVs under study [3,21].
Metadynamics iteratively constructs an umbrella poten-

tial as a sum of hill functions around successively sampled
states, a process referred to as “filling the free energy
surface with computational sand”[1]. These hills are
smooth functions of just a few CVs and come in a variety
of shapes. As a guiding example consider the typical case
of Gaussian hills on a 1D periodic domain as illustrated in
Fig. 1. In WTMetaD, hill shape remains constant but the
hill height decreases as the bias at the sampled point
becomes larger. The bias, which increases monotonically,
eventually changes very slowly with time [2]. The precise
rule for WTMetaD is

Vnþ1ðsÞ ¼ VnðsÞ þGðs; snþ1Þe−Vnðsnþ1Þ=ΔT; ð1Þ

letting s denote a CV state point, Gðs; s0Þ an energy-valued
hill function of s to be deposited when point s0 is sampled,
ΔT an energy-valued positive scalar parameter, sn a
sequence of CV state samples from the biased trajectory
at times tn, and VnðsÞ the sequence of biases at times tn. s
may be a vector [1], a discrete index [37], a function [48],
or any combined set of these. The tn are spaced evenly, and
the underlying system’s dynamics must be Markovian and
ergodic for any fixed bias applied during the simulation. A
Gaussian hill in 1D on a periodic interval corresponds to
Gðs; s0Þ ¼ h exp½−ðs − s0Þ2=δ2� where h is the hill height, δ
is the hill width, and the s − s0 subtraction obeys the
minimum image convention.
To see how metadynamics converges begin by noting

that the bias has two parts with essentially different
functions, illustrated in Fig. 1. The first is the average
level of the bias V̄n ¼

R
VnðsÞds=

R
ds. This level does not

affect the system dynamics. It serves only to record the total
amount of bias, or “computational sand,” deposited so far,
and it never stops increasing. It appears as nothing more
than an intriguing way to measure the elapsed time in a
simulation, as if the computational sand were emerging
from an hourglass. The second is the driving bias
~VnðsÞ ¼ VnðsÞ − V̄n. This portion accounts for all effects
of the bias on dynamics and we assume that its values (and
derivatives if relevant) stay within a finite range by nature
—in practice, metadynamics does not give rise to infinite
energy differences or forces except in pathological cases
[33,34,37,40]. In technical terms, we assume the driving
biases remain in a bounded compact subset of bias space.
To track the evolutions of these parts separately to reveal

more about their functions, split the update into two parts:

V̄nþ1 ¼ V̄n þ expð−V̄n=ΔTÞλðsnþ1; ~VnÞ; ð2Þ
~Vnþ1ðsÞ ¼ ~VnðsÞ þ expð−V̄n=ΔTÞΓðs; snþ1; ~VnÞ; ð3Þ

where the hill level λðs0; ~VÞ ¼ R
Gðs; s0Þe− ~Vðs0Þ=ΔTds=

R
ds

and a driving hill function Γðs; s0; ~VÞ ¼
Gðs; s0Þe− ~Vðs0Þ=ΔT − λðs0; ~VÞ account for how adding hills
affects the average level of the bias and the driving bias,
respectively. Written in this manner it is apparent that
expð−V̄n=ΔTÞ functions as an ever-decreasing step size,
and the sums of expð−V̄n=ΔTÞ make a natural auxiliary
time scale. Because ~Vn is bounded by assumption and
Gaussian hills are positive and bounded, λðsnþ1; ~VnÞ must
be bounded from above and below by some Mu and Ml,

Ml ≤ λðsnþ1; ~VnÞ ¼ ðV̄nþ1 − V̄nÞ expðV̄n=ΔTÞ ≤ Mu:

ð4Þ

Therefore, for the same reasons that _xex ∼ 1 implies x ∼ ln t
and e−x ∼ 1=t,

bl=n ≤ expð−V̄n=ΔTÞ ≤ bu=n ð5Þ
for all large n for some positive bl and bu. An infinite sum
of such terms always diverges, which implies there exists a
time scale τ that is one to one with the original simulation
time scale t and satisfies

τðtnÞ≡
Xn−1
i¼0

expð−V̄i=ΔTÞ: ð6Þ

Examining the updates in this time scale will reveal a
simple structure to asymptotics of the overall method.
At early times, expð−V̄=ΔTÞ is large, so few hills must

be added to accumulate a given increment of τ time. As
time goes on, expð−V̄=ΔTÞ becomes smaller, so more hills
must be added to accumulate the same increment. This is
illustrated in Fig. 2. Because each hill is proportional to
expð−V̄=ΔTÞ, the bias changes overall by an amount

FIG. 1 (color online). Two Gaussian hills on a 1D periodic
domain (top) split into hill level components (lower left) and
driving bias components (lower right). The hill level exerts no
forces and serves only to mark time.
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roughly proportional to the length of the increment. As time
goes on, even the shortest increments dτ will see the
addition of many hills—corresponding to sampling for long
t times—yet because they are short the change in the bias
will be small. Because the change in bias over each of these
short increments is small, the update over each is approx-
imately as if all of the sampling were done on the starting
bias surface; because the sampling goes for a long time and
many hills are added, the update over each is approximately
an integral over hill functions chosen from the biased
equilibrium distribution pbðsÞ ∼ expð−½FðsÞ þ VðsÞ�=TÞ.
Together, the observations in the previous sentence imply
that the cumulative update rule in the limit of large τ and
small dτ is well approximated by

~Vðs; τ þ dτÞ ¼ ~Vðs; τÞ þ dτ
Z

Γðs; s0; ~VðτÞÞpbðs0Þds0;
ð7Þ

suggesting the asymptotics follow the long-time differential
equation

d ~Vðs; τÞ=dτ ¼
Z

Γðs; s0; ~VðτÞÞpbðs0Þds0: ð8Þ

A related equation can be found in the appendix of
Branduardi et al. [49]. Though this argument may seem
heuristic, it is precise given conditions defined later in this
Letter [47].
Next, given this asymptoticODEonemust characterize its

asymptotic behavior in turn. One viable strategy is to
determine the fixedpoints of the equation and then character-
ize the stability of those fixed points. The fixed points are
those biases for which

R
Γðs; s0; ~VÞpbðs0Þds0 ¼ 0,R

Gðs; s0Þ exp½− ~Vðs0Þ=ΔT�pbðs0Þds0 ¼ C for some constant
C, a very appealing result because it corresponds to the
heuristic used to motivate metadynamics when it was first
introduced: assuming perfect sampling [1]. For the 1D
Gaussians being considered, this amounts to

e− ~VðsÞ=ΔTe−½FðsÞþ ~VðsÞ�=T ∼ C; ð9Þ

or

~VðsÞ ¼ −ð1þ T=ΔTÞ−1FðsÞ þ C0 ð10Þ

for a different constant C0—exactly the end state originally
suggested for WTMetaD [2].
Already, the fact that there is only one unique fixed point

in this case is a good sign. In fact, the fixed point is both
unique and globally attracting; i.e., the ODE will converge
to the desired end state whatever its physically reasonable
initial state, as can readily be verified with an appropriate
choice of Lyapunov function. One choice is the Kullback-
Leibler divergence (relative entropy) of the current
tempering-reweighted state pwðs; τÞ ∼ exp½− ~Vðs; τÞ=ΔT�×
expð−½FðsÞ þ ~Vðs; τÞ�=TÞ from the target sampling end
state pwðs; τÞ ∼ 1 named pcðsÞ, given by

DðpcjjpwÞ ¼
Z

pcðsÞ ln
pwðs; τÞ
pcðsÞ

ds: ð11Þ

After a series of algebraic manipulations, the τ time
derivative is given by

dDðpcjjpwÞ=dτ ¼ −rðτÞ
Z Z

½pwðs; τÞ − pcðsÞ�Gðs; s0Þ½pwðs0; τÞ − pcðs0Þ�dsds0; ð12Þ

where rðτÞ is a positive parameter involving T, ΔT, and
normalization factors for pwðs; τÞ (see the algebra in the
Supplemental Material [50]). When Gðs; s0Þ ¼
he−ðs−s0Þ2=δ2 , this derivative is always less than zero unless
pwðsÞ ¼ pcðsÞ, in which case it is exactly zero. Thus the

relative entropy is a Lyapunov function for the ODE and
the driving bias satisfying Eq. (10) is a global attractor. The
method converges asymptotically.
With that guiding example followed to its conclusion,

now consider adapting the argument for more general

FIG. 2 (color online). Typical cumulative bias updates from a
flat sampling distribution over short intervals of equal τ durations
(dτ) at early (top) and late (bottom) times. Yellow lines denote the
bias after each successive update during the interval, with the top
line in each figure the final updated bias. Red dashed lines denote
the change in average bias level. As time goes on, the total bias
deposited in each interval of fixed τ duration stays roughly
constant while the number of hills and the quality of sampling
both increase.
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cases. The most practically important generalization is
across hill functions, e.g., geometrically adapted hills
[49], hills designed for metadynamics on finite domains
[37,40,51], and hills interpolated over discrete grids [44].
Considering the update Eq. (1) once more but leaving the
hill function unspecified, one may follow the same intu-
itions given design constraints on Gðs; s0Þ.
First, to find the time scale τ well behaved, the quantityR
Gðs; s0Þds= R ds must exist and be positive for any s0:

hills must add bias, enough to eventually fill the region, so
the region must be finite in size. Also, ΔT must be finite
and positive. Second, for the ODE to have meaningful fixed
points, the equation

Z
Gðs; s0Þpcðs0Þds0 ¼ C ð13Þ

must have at least one positive, normalized, physically
possible solution pcðsÞ for some constant C: there must be
a possible sampling distribution from which the bias update
will not change that distribution. Finally, for relative
entropies to be Lyapunov functions, Gðs; s0Þ must be
positive semidefinite: the hills must be deposited so that
they encourage escape from local traps, never tightening
of traps.
Given all of these conditions on Gðs; s0Þ, the reasoning

above can be extended to show that the instantaneous
tempering-reweighted distribution for any such method
asymptotically approaches the set of normalized solutions
of Eq. (13), possibly converging to one or possibly
fluctuating in the set indefinitely: the Lyapunov function
is the infimum of the relative entropies above over all
physically realizable choices of pc. Using smooth, boun-
dary-consistent Gaussian hills satisfies all these conditions
and guarantees a unique solution. The nonuniqueness and
possible fluctuation are confined to the details that the hill
function cannot resolve: the null space of

R
Gðs; s0Þds0. For

instance, if the hills are chosen to be step functions on
certain regions of CV space, the detail within each region
will not be flattened but all coarser aspects of the free
energy surface will be—as in Wang-Landau sampling [24].
The analysis above also suggests more general temper-

ing schemes. A new type of metadynamics, introduced here
and inspired by density of states methods [24,27,35] and
self-healing umbrella sampling [19], is “globally tempered
metadynamics,” (GTMetaD), where hill size is independent
of location and adaptively set based on global properties of
the bias; the update rule here is

Vnþ1ðsÞ ¼ VnðsÞ þ w½Vn�Gðs; snþ1Þ; ð14Þ
where w½V� is a unitless positive scalar functional of the
bias and the other variables are as before. If w½V� can be
factored into bias-level and driving-bias components as
ω½ ~V� expð−V̄=ΔTÞ, then all of the previous convergence
reasoning for WTMetaD also holds for GTMetaD. Simple

GTMetaD schemes of this form appear to offer substantial
advantages over WTMetaD [27,35] and, furthermore, one
could use both temperings together in hybrid schemes.
The part of the argument above requiring the most

careful technical analysis is the derivation of the long-time
ODE Eq. (8). Precise, permissive sufficient conditions for
this intuition to hold constitute an important result for the
wider field of adaptive biasing enhanced sampling meth-
odology. It can be proven using the method of Theorem
6.6.1 from Kushner and Yin [47] given two additional
conditions on the underlying system dynamics. Roughly
put, this theorem proves that a stochastic iteration of the
form θnþ1 ¼ θn þ ϵnYnðθn; xnÞ, where θn are the desired
iterates, ϵn are step sizes, and Ynðθn; xnÞ are updates that
depend on the current iterate θn and the randomly sampled
state xn of a Markov model whose transitions may depend
on θn, converges like solutions of the differential equation
dθ=dτ ¼ hYðθ; xÞi with probability 1, where τ ¼ P

ϵn and
the expectation is taken over the equilibrium distribution of
x given θ. It holds if the sum of the ϵn diverges while the
sum of ϵ2n converges, the Yn are bounded, and a few other
technical conditions hold. In our case, θ is the driving bias
and the theorem applies to Eq. (3) with snþ1 a projection of
a fine-grained system state xn sampled from a fixed-bias-
Markovian dynamics.
The first technical condition not already established

matches the claim that one can approximate cumulative
bias updates over fixed τ increments as adding infinite hills
chosen from the biased equilibrium distribution. A precise
requirement is that however many hills are added, the
expected difference between updating from the actual
sampling distribution and from the quasiequilibrium sam-
pling distribution should always be at least as small as a
single update step, i.e.,

X∞
m¼nþ1

e−V̄m=ΔTðEne; ~Vn;xn
− Ee; ~Vn

ÞΓðs; sm; ~VnÞ

¼ Oðe−V̄n=ΔTÞ; ð15Þ

for every s, xn visited, and Vn visited. Here Ene; ~Vn;xn
is the

expectation over system states given nonequilibrium
dynamics under bias ~Vn given that the (fully specified)
system state is xn at tn, and Ee; ~Vn

is the equilibrium
expectation under bias ~Vn. Since Γðs; sm; ~VnÞ is indepen-
dent of t and the ϵn decay as 1=n, if the system is
Markovian and time invariant this reduces to

X∞
m¼nþ1

1

m
½pVn

ðs; xn; tm − tnÞ − pbðs; VnÞ� ¼ Oð1=nÞ:

ð16Þ
Here pVðs; x; tÞ is the probability of going from a system
state x to any system state that maps to CV state s in time t
with the dynamics subject to fixed bias V, while pbðs; VÞ is
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the equilibrium CV distribution under fixed bias V. Note
that it is each fixed-bias dynamics, not the CV dynamics or
adaptively biased dynamics, that is Markovian here—a
standard case for molecular dynamics and Monte Carlo
simulations. This sum measures how quickly a system
approaches equilibrium, so the condition is a more precise
formulation of the intuition that metadynamics works only
when the system equilibrates reasonably quickly. If non-
equilibrium fluctuations in the system decay exponentially
or stretched exponentially, the usual case for nondriven
ergodic systems away from criticality, then the differences
in the sum decay properly and the condition is satisfied.
The second matches the claim that one can approximate

the cumulative update over a τ time increment as if all of the
sampling were done on the starting bias surface. This can
only be true if the sum of many hills does not change too
rapidly with small changes in the bias. In more precise
terms, the sum in the previous paragraph must have
derivatives with respect to Vn bounded by the step size,

X∞
m¼n

1

m

δðpVn
ðs; xn; tm − tnÞ − pbðs; VnÞÞ

δVn
¼ Oð1=nÞ ð17Þ

for all s, xn visited, and Vn visited. A sufficient condition
for this is that pVðs; x; tÞ should have bounded functional
derivatives with respect to V that relax to their long-time
value with any algebraic dependence faster than 1=t. This
amounts to a precise formulation of the intuition that
metadynamics only works if the system does not jam or
become unstable in response to the bias, and it is also a
permissive condition for nondriven ergodic systems away
from a phase transition. It will typically be satisfied
whenever the system is finite and the short-time generator
of dynamics is a smooth function of the bias, for instance
when the bias is implemented simply as an added force in
Langevin molecular dynamics [1] or as an added energy in
Metropolis Monte Carlo calculations [37].
These two conditions, together with the stated design

constraints on the hill function and the assumption that the
driving bias stays properly bounded throughout the sim-
ulation, are enough to allow for a detailed proof that
WTMetaD as actually implemented converges asymptoti-
cally and converges to simple, designable end states [47].
However, it gives no guarantees that it will converge
quickly, especially when used with poorly chosen CVs.
The end states are exactly those suggested by the simple
quasiequilibrium heuristic that Laio and Parrinello used to
motivate metadynamics when it was first introduced [1],
with no mollification artifacts [39], and Bussi et al.’s gauge
free energy concept [34] proves key. This analysis is
flexible enough to cover metadynamics with or without
adaptive Gaussians [49] or boundary corrections [37,40,51],
and with or without an approximating grid [44]. Furthermore
it provides design constraints for such methods and dem-
onstrates a powerful yet little-known tool for rigorously

characterizing nonequilibrium, non-Markovian systems. As
sampling methods become ever more sophisticated and
diverse, ensuring that sufficiently powerful analysis strate-
gies are brought in to complement them becomes ever more
important.
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