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Strongly non-Markovian randomwalks offer a promising modeling framework for understanding animal
and human mobility, yet, few analytical results are available for these processes. Here we solve exactly a
model with long range memory where a random walker intermittently revisits previously visited sites
according to a reinforced rule. The emergence of frequently visited locations generates very slow diffusion,
logarithmic in time, whereas the walker probability density tends to a Gaussian. This scaling form does not
emerge from the central limit theorem but from an unusual balance between random and long-range
memory steps. In single trajectories, occupation patterns are heterogeneous and have a scale-free structure.
The model exhibits good agreement with data of free-ranging capuchin monkeys.
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The individual displacements of living organisms exhibit
rich statistical features over multiple temporal and spatial
scales. Because of their seemingly erratic nature, animal
movements are often interpreted as random search proc-
esses and modeled as random walks [1–3]. In recent years,
the increasing availability of data on animal [4–7] as well as
human [8–11] mobility has motivated numerous models
inspired from the simple random walk (RW). Let us
mention, in particular, multiple scales RWs, such as Lévy
walks [12,13] or intermittent RWs [4,14–16], which are
walks with short local movements mixed with less frequent
but longer commuting displacements.
Markovian RWs are the basic paradigm for modeling

animal and humanmobility and they provide useful insights
at short temporal scales. However, empirical studies con-
ducted over long periods of time reveal pronounced non-
Markovian effects [11,17,18]. As for humans, mounting
evidence shows that many animals have sophisticated
cognitive abilities and use memory to move to familiar
places that are not in their immediate perception range
[19,20]. The use of long-term memory should strongly
impact movement and it is probably at the origin of many
observations which are incompatible with RW predictions,
such as very slow diffusion, heterogeneous space use, the
tendency to revisit often particular places at the expense of
others, or the emergence of routines [10,11,17,18,21,22].
Non-Markovian random walks, where movement steps
depend on the whole path of the walker [23–25], offer a
promising modeling framework in this context. But the
relative lack of available analytical results in this area limits
the understanding of the effects of memory on mobility
patterns.
Self-attracting or reinforced RWs are an important class

of non-Markovian dynamics [26]. In these processes,
typically, a walker on a lattice moves to a nearest-neighbor

site with a probability that depends on the number of times
this site has been visited in the past [27–29]. These walks
must be in principle described by a hierarchy of multiple-
time distribution functions, or can be studied within field
theory approaches [30]. In a slightly different context, some
exact results have been obtained for the mean square
displacement (MSD) in globally reinforced models, such
as the so-called elephant walk [23,24], where the walker
tends to move in the same direction as the sum of all its
previous movement steps.
In this Letter we solve a minimal, lattice version of a

reinforced model proposed some time ago in the ecological
literature [21,22], where a walker can either move ran-
domly (explore locally) or stochastically relocate to places
visited in the past (via long distance steps). A constant
parameter describes the relative rate of these two movement
modes (Fig. 1). This RWmodel with long range memory is,
to our knowledge, one of the very few where not only
the MSD is derived exactly, but also the asymptotic form of
the full probability density. We then compare the model
with field data and infer the strength of memory use in real
animals.
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FIG. 1 (color online). A model walker combining random steps
to nearest-neighbor sites and relocations, at a rate q, to sites
visited in the past (marked in light color).
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We consider a walker with position Xt at time t on a
regular d-dimensional lattice with unit spacing, and initially
located at X0 ¼ 0. Consider q a constant parameter,
0 < q < 1. At each discrete time step, t → tþ 1, the
walker decides with probability 1 − q to visit a randomly
chosen nearest-neighbor site, as in the standard RW. With
the complementary probability q, the walker relocates
directly to a site visited in the past (Fig. 1). In this case,
the probability to choose a given lattice site, among all the
visited sites, is proportional to the number of visits this site
has already received in the interval ½0; t�. It is thus more
likely to revisit a site which has been visited many times
than a site visited only once. This linear preferential revisit
rule is equivalent to choosing a random integer t0 uniformly
in the interval ½0; t� and to return to the site occupied at t0.
This model bears some similarities with that of Ref. [31],
where a RW is stochastically “reset” to the origin (t0 ¼ 0)
at a constant rate. Here, the RW can be reset to any
previous time, or visited site, thus making the process
highly non-Markovian.
We summarize our main results in 1d for this model,

where memory profoundly modifies the normal diffusion
process and generates complex patterns of space occupation.
(The results naturally extend to higher dimensions.) Let
Pðn; tÞ be the probability that Xt ¼ n. The MSD, defined as
the ensemble average hX2

t i ¼ M2ðtÞ≡P∞
n¼−∞ n2Pðn; tÞ, is

calculated exactly for all t. Asymptotically, it grows very
slowly with time:

M2ðtÞ≃ 1 − q
q

½lnðqtÞ þ γ�; t ≫ 1; ð1Þ

with γ ¼ 0.5772… the Euler constant. In addition, the
distribution Pðn; tÞ tends to a Gaussian, as in normal
diffusion, but with a variance given by the anomalous
logarithmic law (1) instead of the usual normal law ∝ t:

Pðn; tÞ → Gðn; tÞ≡ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πM2ðtÞ

p e−
n2

2M2ðtÞ: ð2Þ

Notably, the mechanism that makes the process eventually
Gaussian is driven by memory and thus differs from the
central limit theorem. In particular, the convergence toward
this scaling form is logarithmically slow in time; thus, it is
difficult to observe in practice in discrete time simulations.
We also study the probability PðvÞ

t ðmÞ that a site, randomly
chosen among the sites visited by a single walker in ½0; t�,
has received exactly m visits. Numerical results in 2d
suggest a power-law behavior:

PðvÞ
t ðmÞ ∝ m−α; with α≃ 1.1; ð3Þ

which indicates that the walker occupies space in a very
heterogeneous way. The model in 2d agrees quantitatively
with trajectory data of capuchin monkeys (Cebus
capucinus) in the wild.

We next present a derivation of the results. In contrast
with most path-dependent processes, here, a closed and
exact master equation can be written for Pðn; tÞ; see the
Supplemental Material [32]. In 1d, it reads

Pðn; tþ 1Þ ¼ 1 − q
2

Pðn − 1; tÞ þ 1 − q
2

Pðnþ 1; tÞ

þ q
tþ 1

Xt

t0¼0

Pðn; t0Þ: ð4Þ

The last term in Eq. (4) indicates that site n can be visited
(from any other site) according to the memory rule
provided that the walker was at n at an earlier time t0.
We define the even moments of the distribution as

M2pðtÞ ¼
P∞

n¼−∞ n2pPðn; tÞ with p a positive integer
[M2pþ1ðtÞ ¼ 0 by symmetry].
Mean square displacement.—Taking the second moment

of Eq. (4), we obtain an evolution equation for the MSD:

M2ðtþ 1Þ ¼ 1−qþð1−qÞM2ðtÞþ
q

tþ 1

Xt

t0¼0

M2ðt0Þ; ð5Þ

where we have used the normalization condition
M0ðtÞ ¼ 1. The above equation can be solved by intro-
ducing the Z-transform of M2ðtÞ, defined as eM2ðλÞ ¼P∞

t¼0 λ
tM2ðtÞ. Transforming Eq. (5) and using the identity

λt=ðtþ 1Þ ¼ λ−1
R
λ
0 u

tdu, one obtains

eM2ðλÞ
λ

¼ 1 − q
1 − λ

þ ð1 − qÞ eM2ðλÞ þ
q
λ

Z
λ

0

du
eM2ðuÞ
1 − u

: ð6Þ

This equation becomes a first order ordinary differential
equation after taking a derivative with respect to λ. As
M2ðt ¼ 0Þ ¼ 0, the condition to be fulfilled by the solution
of Eq. (6) is eM2ðλ ¼ 0Þ ¼ 0. One finds,

eM2ðλÞ ¼ −
�
1 − q
q

�
lnð1 − λÞ − ln½1 − ð1 − qÞλ�

1 − λ
: ð7Þ

The function fðtÞ, such thatP∞
t¼0 λ

tfðtÞ¼ ln½1− ð1−qÞλ�=
ð1−λÞ, is fðtÞ ¼ −

P
t
k¼1ð1 − qÞk=k. Therefore, Eq. (7)

can be inverted, giving the exact solution

M2ðtÞ ¼
1 − q
q

Xt

k¼1

1 − ð1 − qÞk
k

: ð8Þ

At large t,
P

t
k¼11=k≃lntþγ and

P
t
k¼1ð1−qÞk=k≃− lnq,

yielding the asymptotic behavior (1) up to order ðln tÞ0.
This result holds in any spatial dimensions. Figure 2(a)
displays Eq. (1) for several values of q, in very good
agreement with numerical simulations. Despite the random
steps, at any finite q, memory induces frequent returns to
the same sites and very slow diffusion.
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Higher moments.—The asymptotic form of the propa-
gator Pðn; tÞ can be extracted in principle from the knowl-
edge of all its moments at large t. We first assume that a
scaling relation is satisfied for t large enough:

M2pðtÞ≃ ap½M2ðtÞ�p; ð9Þ

for any integer p, with ap a constant. A well-known
property of the Gaussian distribution with zero mean
and arbitrary variance is that of having a0 ¼ 1 and

ap ¼ ð2p − 1Þap−1; p ≥ 1: ð10Þ

We take the 2pth moment of Eq. (4):

M2pðtþ 1Þ −M2pðtÞ ¼ 1 − qþ ð1 − qÞ
Xp−1

k¼1

C2k
2pM2kðtÞ

þ q
tþ 1

Xt

t0¼0

½M2pðt0Þ −M2pðtÞ�:

ð11Þ

Since M2ðtÞ diverges at large t, from (9) the leading term
in the first sum of (11) is that with k ¼ p − 1, like in
the simple RW. But unlike in the RW, the left-hand side
M2pðtþ 1Þ −M2pðtÞ → 0 and can be neglected, since it
is ≃dM2p=dt ∝ ðln tÞp−1=t. Thus, using Eqs. (9) and (1),
Eq. (11) gives the following relation for the ap’s:

ap ¼ pð2p − 1Þap−1 lim
t→∞

ðtþ 1Þðln tÞp−1
P

t0¼t
t0¼cst½ðln tÞp − ðln t0Þp� : ð12Þ

The limit in (12) turns out to be 1=p [33]. Therefore,
relation (10) is obtained, implying the Gaussian form (2).
This analysis illustrates that, here, Gaussianity is not the

result of random increments producing fluctuations that
scale as

ffiffi
t

p
, but rather emerges in a process with very small

fluctuations (of order
ffiffiffiffiffiffiffi
ln t

p
) from a balance between purely

random steps and recurrent memory steps.
To examine how ap=ap−1 converges towards 2p − 1, we

relax the condition that ap is constant. Assuming that
dapðtÞ=dt does not decay slower than an inverse power law
of time, one can still neglect the left-hand side of (11).
Keeping the terms of order ðln tÞp−1 and ðln tÞp−2, the
leading time-dependent correction is obtained:

ap
ap−1

ðtÞ ¼ ð2p − 1Þ
�

1þ cp
ln t

�

þOððln tÞ−2Þ; ð13Þ

with cp ¼ ðp − 1Þ½1þ q=6ð1 − qÞ�. We see from (13) that
the distribution Pðn; tÞ converges extremely slowly toward
the Gaussian form (typically after t ∼ 10100), due to
corrections of order 1= ln t in the moment relations.
In standard sums of random variables, these corrections
are Oð1= ffiffi

t
p Þ. Figure 2(b) displays the quotient QpðtÞ≡

M2pðtÞ=½M2p−2ðtÞM2ðtÞ� obtained from numerical simu-
lations as a function of time, for p ¼ 2; 3, and 4. If a scaling
relation (9) strictly holds, QpðtÞ ¼ ap=ap−1. At t ¼ 108,
QpðtÞ still differs significantly from 2p − 1. Figure 2(b)
also displays ap=ap−1ðtÞ as given by formula (13). What
seems to be a plateau at a constant value > 2p − 1 is
actually a very slowly decaying function. The differences
between the simulation and the analytical results are due to
terms Oððln tÞ−2Þ or higher, which are not that small.
Monkey mobility data.—The very slow growth of the

MSD with t in our model agrees qualitatively with the fact
that most animals have limited diffusion or home ranges
[18,21,34–36]. We further compare the model predictions
with trajectories of real animals in the wild. The displace-
ments of four radio-collared capuchin monkeys were
recorded during a period of six months in Barro Colorado
Island, Panama. Discretized 2d positions, with resolution
Δl ¼ 50 m were recorded every 10 min (see [18,37] for
details). Since no ensemble averages can be performed, we
calculated for each individual monkey the time-averaged
square displacement (TASD), noted as δ2ðtÞ, along each
trajectory [18]. We also calculated this quantity for simu-
lated 2d walks in the model,

δ2ðtÞ≡ 1

N − t

XN−t

i¼1

jXiþt −Xij2; ð14Þ

with N the total number of positions, and then obtained the
numerical hδ2ðtÞi by averaging over many walks. This
quantity is a priori different from the MSD.
In Fig. 3(a), the animals display a Brownian regime with

δ2ðtÞ≃ 4Dt at short times, with a diffusion coefficientD≃
300 m2=min for all four monkeys, followed by a saturation
at a roughly constant value. Setting the lattice spacing
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FIG. 2 (color online). (a) MSD as a function of time for
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Δl ¼ 50 m in the model, too, the model time step is
adjusted to Δt ¼ 30 min so that hδ2ðtÞi matches the
monkeys TASD at short times (hence, the 6 months of
foraging data correspond to N ¼ 8640). These parameters
being fixed, the value q≃ 0.12� 0.02 best describes the
monkeys TASD over the entire time range [Fig. 3(a)]. The
resulting relocation rate r≡ q=Δt≃ 0.004 min−1 is low,
suggesting that memory use by capuchin monkeys is
intermittent. But even this small r strongly affects diffusion
after a few hours.
We note at this point that the model is nonergodic, in the

sense that hδ2ðtÞi ≠ M2ðtÞ [38]. Here, hδ2ðtÞi quickly
reaches a plateau, whereas M2ðtÞ is smaller and slowly
grows with t, as shown in Fig. 3(a) with q ¼ 0.12. Another
criterion of nonergodicity involves an ergodicity breaking
parameter, which measures the fluctuations among

time averages obtained from different trajectories: EB≡
h½δ2ðtÞ�2i=hδ2ðtÞi2 − 1 [39,40].According to this criterion, a
process is nonergodic if limN→∞EB ≠ 0. Setting q ¼ 0.12
andN ¼ 8640 givesEB ¼ 0.055 for themodel.We actually
find that EB → 0 asN → ∞ (not shown). Hence, the model
is ergodic in this second sense: different long trajectories

have the same δ2ðtÞ at short times [or δ2ðtÞ≃ hδ2ðtÞi].
Interestingly, this similitude is also observed in the four
monkeys [see Fig. 3(a)].
Figure 3(b) shows the number SðtÞ of distinct sites

visited by the model walker in 2d with the parameters fitted
above, confirming the good agreement with empirical data.
Further insight into the recurrent properties of these walks
is given by the distribution function of the number m of
visits per site, PðvÞ

t ðmÞ. Scale-free distributions often are an
outcome of preferential rules, such as in Yule processes
[41,42] or network growth models with preferential attach-
ment [43,44]. In a model trajectory, many sites are visited
only once whereas fewer sites are visited very often and

thus are likely to be visited again, giving rise to the
formation of “hot spots” of activity. We speculate that
PðvÞ
t ðmÞ in 2d is scale-free when q ≠ 0. The exponent α

introduced in Eq. (3) seems to be independent of q, as
shown in Fig. 4. The scaling regime is more extended for q
and t large. Monkeys visitation patterns closely follow the
theoretical law. Unlike in Yule processes or the reinforced
walk with preferential visits of Ref. [11], spatial correla-
tions are strong here (the sites near a hot spot are likely to
be visited often, too), making the analytical calculation of
PðvÞ
t ðmÞ quite challenging.
Discussion.—Motivated by the modeling of animal

mobility, we have studied a minimal, solvable random
walk model with infinite memory where the sites visited in
the past are preferentially revisited. Memory induces very
slow diffusion and slowly drives the process towards
Gaussianity. This latter form contrasts with the scaling
functions of Markovian RW models exhibiting logarithmic
diffusion (e.g., the Sinai model [45–47]) or stopped
diffusion (e.g., the RW stochastically reset to the origin
[31]), which have exponential tails. Likewise, the scaling
function of the elephant walk model [23] in the anomalous
regime is not Gaussian, although its precise form is not
known [48]. Our results point out a new mechanism for
the emergence of Gaussian distributions, which could be
generic in stochastic processes where a recurrent memory
does not prevent fluctuations from diverging with time, but
makes them grow slower than a power law. As a conse-
quence, the process is asymptotically described by an
effective Fokker-Planck equation with a time dependent
diffusion coefficient, D ¼ ð1 − qÞ=ð2qtÞ, see Eqs. (1)–(2).
Such an effective description is useful for studying first-
passage properties [49]. The aging properties of the model
also deserve further study.
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The primate mobility data presented here provide addi-
tional evidence that memory is a key factor for home range
self-organization [21,22,35,36,50,51]. Our model suggests
that the use of memory is likely to be intermittent in animals,
and that even a very small rate r can induce very slow
diffusion and heterogeneous patterns of space occupation.
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