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We study the problem of irreversibility when the dynamical evolution of a many-body system is
described by a stochastic quantum circuit. Such evolution is more general than a Hamiltonian one, and
since energy levels are not well defined, the well-established connection between the statistical fluctuations
of the energy spectrum and irreversibility cannot be made. We show that the entanglement spectrum
provides a more general connection. Irreversibility is marked by a failure of a disentangling algorithm and
is preceded by the appearance of Wigner-Dyson statistical fluctuations in the entanglement spectrum. This
analysis can be done at the wave-function level and offers an alternative route to study quantum chaos and
quantum integrability.
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In closed quantum systems, evolution is unitary and both
irreversibility and nonintegrability are elusive notions.
Because of unitarity, evolution is always stable under
errors in initial conditions. Thus, in quantum mechanics
irreversibility is defined by the vanishing of the probability
(known as fidelity) of returning to an initial state under
arbitrarily small imperfections in the Hamiltonian during
the reversed time evolution [1]. Nonintegrability is asso-
ciated to a Wigner-Dyson distribution of the energy-level
spacings that shows level repulsion [2] and nonintegrable
Hamiltonians in this context are irreversible. Integrable
Hamiltonians, instead, tend to show clustering of energy
levels but can be either reversible or irreversible [3,4].
When the time evolution is not governed by a Hamiltonian,
or when the Hamiltonian is time dependent, energy levels
are not well defined and these associations cease to be
meaningful. How can one relate nonintegrability and
irreversibility in these more general cases of quantum
evolution?
In this Letter we show that one can answer this question

by looking at the wave function alone. This route allows
one to study generic quantum evolutions even when energy
is not well defined. We show that by studying the level
statistics of the entanglement spectrum one can determine
whether the evolution is irreversible or not through a
protocol that we call entanglement cooling. It turns out
that the onset of irreversibility is marked by the presence of
Wigner-Dyson statistics in the entanglement spectrum.
The quantum system we consider contains n qubits and

evolves unitarily from an initial factorized state of the form
jΨ0i ¼ jψ1i ⊗ jψ2i ⊗ � � � ⊗ jψni where each single-qubit
state is defined as jψ ji ¼ cosðθj=2Þj0iþ
sinðθj=2Þeiϕj j1i, with θj and ϕj arbitrary. Formally, the
evolution is obtained by applying a unitary matrix U to the

state vector, jΨti ¼ UjΨ0i ¼
P

xΨtðxÞjxi, where the states
jxi≡ jx1x2…xni form the computational basis, with
xj ¼ 0; 1 for j ¼ 1;…; n. Using the language of quantum
computing, we assume that this unitary matrix is repre-
sented by gates. We recall that the two-qubit CNOT gate and
arbitrary one-qubit rotations are sufficient for universal
quantum computing [5]. In what follows, we shall restrict
the gates to the permutation group, which is a subgroup of
the unitary group. The restriction to the permutation
subgroup of unitary transformations allows for a much
more efficient computation of the state of the system as it
evolves with gates. In particular, we consider the unitary
gates in the set I3 ¼ fSWAP;CNOT;Toffolig depicted in
Fig. 1. We build a stochastic quantum circuit U ¼ Q

M
k Uk

FIG. 1. Reversible gates used in the quantum stochastic
evolutions. The output values of the gates are defined when a, b,
and c take values 0 and 1. Top row: The two-qubit gates SWAP

and CNOT. Bottom row: The different variations of the three-qubit
Toffoli gates. We note that different variations of the CNOT

and Toffoli gates can be obtained from one fixed variation plus
NOT gates.
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by drawing randomly with uniform probability pairs or
triplets of qubits and a random gate Uk ∈ I3 with prob-
ability 1=3. We remark that the Toffoli gate alone is
sufficient for universal classical computation [6]. We
also consider more restricted (and nonuniversal)
circuits obtained by employing only gates in the set I2 ¼
fSWAP;CNOTg.
At each step k of the circuit, the n qubits are partitioned

into subsystems (A, B) with nA and nB qubits, and the
entanglement properties of the system are obtained through
the singular values λk > 0, k ¼ 1…; r, which result from
the Schmidt decomposition [7,8] of the state jΨti ¼P

r
k¼1 λkjψA

tðkÞi ⊗ jψB
tðkÞi. The reduced density matrices

ρA ¼ trBðjΨtihΨtjÞ and ρB ¼ trAðjΨtihΨtjÞ have eigenval-
ues fpk ¼ λ2kg. These pk define a probability distribution
whose Rényi entropies are defined as [9]

SqðnA; nBÞ ¼
1

1 − q
log2

Xr

k¼1

pq
k; ð1Þ

with
P

r
k¼1 pk ¼ 1. The zeroth Rényi entropy is related to

the rank, namely, the number r of nonzero singular values,
S0 ¼ log2 r. The q ¼ 1 Rényi entropy is the Shannon
entropy measuring the amount of information in the
distribution fpkg: S1 ¼ −

P
kpklog2pk.

What happens to entanglement during the evolution with
gates? One can show that, under a generic stochastic
random circuit, entanglement grows linearly with time,
and then saturates to its maximum possible value [10,11].
This occurs typically, meaning that the probability of
having a different outcome is zero in the thermodynamic
limit. A similar behavior is obtained also for the restricted
quantum evolutions considered here, whether one uses two-
or three-qubit gates. The saturation value is typically
reached after about M ∼ n2 transformations. In Fig. 2,
we see a numerical simulation of the protocol used, with

both two-qubit and three-qubit gates, which confirms this
scenario. We call this part of the protocol “entanglement
heating.”
Because entanglement increases with the number of

gates, in order to revert the evolution to return back to
the initial state, it is natural to attempt an algorithm that
completely disentangles the system. The entanglement
entropies provide a natural metric to use in a minimization
process. If one is able to remove all the entanglement while
recording the moves that led to the decreases, one builds
one possible reverse algorithm that takes the system from
the final state back to the initial (product) state. In practice,
we implement such a disentangling or “entropy cooling”
algorithm as follows. We attempt a gate, chosen at random,
and compute the change in entanglement entropy. Then we
decide whether or not to accept this gate into the sequence
according to a Metropolis algorithm: if the entanglement
goes down, we always take this move; if not, we take it with
a certain probability, which we decrease as function of the
number of attempts (similarly to simulated annealing, but
applied to entanglement entropy and not energy). More
precisely, we use as the optimization function the sum of
the entanglement entropies over all bipartitions of the
system into nA and nB consecutive qubits with
nA þ nB ¼ n, namely, Sq ¼

P
n−1
nA¼1 SqðnA; nBÞ. The reason

for this choice is that a single bipartition is sensitive only to
gates that act on qubits in both subsystems A and B.
However, if one considers the sums over the entanglement
for all bipartitions, one is sensitive to all reductions in
entanglement, no matter where the gates act.
The resulting q ¼ 1 Rényi entropy as a function of the

gate number for a given sequence of the algorithm using
only the gates in I2 is shown in Fig. 2(a). The data show
two examples of the entanglement evolution for two
particular “heating” and “cooling” runs, as well as the
average of 128 different realizations with random initial
product states for 16 qubits, with each θj randomly picked
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FIG. 2 (color online). Evolution of the entanglement entropy S1 obtained from the bipartition of the qubit string at the middle
(nA ¼ nB ¼ 8) as a function of the number of applied gates. First,Mh reversible gates are randomly applied (heating period); second, a
Metropolis algorithm is used to reverse the evolution and restore zero entropy (cooldown period). The shorter solid black line
(Mh ¼ 512) and the longer red line (Mh ¼ 4096) result from averaging S1 over 128 initial-state realizations. The faded brown lines show
the evolution of S1 for two typical realizations. (a) Only two-qubit gates are used. Upper inset: The heating period. Lower inset: Shifted
curves, showing that the cooling, on average, is independent of the duration of the heating period. (b) A mixture of two-qubit and Toffoli
gates is used. Inset: Detail of the transition between heating and cooling periods. The dashed line indicates the transition point.
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from the interval [0, π], and ϕj ¼ 0; π (thus focusing on real
wave functions). We show data for the case when the
system is entangled with 512 and with 4096 gates. The
system is “cooled” by minimizing S0 (similar results are
obtained when minimizing S2). Notice that the “cooling”
time for the average curve does not depend on how long the
system was “heated,” provided that the same maximum
entanglement entropy is reached. The disentangling algo-
rithm works for all individual realizations of the protocol.
We were always able to reverse to a completely factorized
tensor product state with zero entanglement. This is quite
remarkable, because the success of the algorithm does not
depend at all on the amount of the entanglement produced.
So one may wonder whether every quantum circuit can be
reversed with such a cooling protocol.
To answer this question, consider now the case when

entanglement entropy “heating” involves the gates in I3.
Then, apply the disentangling algorithm using the same set
of gates. For all realizations studied, we find that it is never
possible to completely disentangle the state using the
Metropolis protocol described above [12]. In Fig. 2(b)
we show two typical realizations of the heating and cooling
protocol, with a random initial product state and 512
random gate sequences for the heating phase. We also
show the average over 128 realizations.
And yet, by only looking at the amount of entanglement

generated upon “heating,” we cannot tell whether the evo-
lution is reversible by the cooling algorithm. As we have
shown, by heating with either two-qubit gates or a mixture
of two-qubit and Toffoli gates, one rapidly reaches an almost
maximally entangled state. Nevertheless, only for the
former are we able to reverse the system back into a
product-state form. Indeed, it is known that most states in
the Hilbert space are maximally entangled, and that
generic quantum evolutions will eventually lead to an
almost maximally entangled state [10,13–15]. This
happens even under quantum quench with an integrable
Hamiltonian [16].
What is in the entanglement, which is not the entangle-

ment entropy, that tells us whether a quantum evolution is
reversible or not? The answer lies in the statistics of the
levels fpkg in the entanglement spectrum. We have
computed the entanglement spectrum of the qubit string
at the end of the heating period. The spectrum is obtained
from the singular values resulting from the Schmidt
decomposition of the quantum state upon bipartitioning
of the qubit string in the middle (i.e., nA ¼ nB ¼ n=2). The
spectrum is first unfolded to yield a constant density before
the statistical analysis is performed (see Supplemental
Material [17]). In Fig. 3(a) we show the distribution of
the spacings between adjacent singular values for reversible
cases (heating period performed with I2 gates) and
irreversible ones (heating period performed with I3 gates).
The difference is striking: while the data points for the
irreversible case match quite closely the distribution of

spacings of the Gaussian orthogonal ensemble (GOE) of
random matrices [18], the data points for the reversible case
show a weaker repulsion and follow the so-called semi-
Poisson statistics, which has been proposed for the energy
spectra of systems at metal-insulator transitions [19]. The
difference in behavior is also manifest in the spectral
rigidity function Δ3ðLÞ, which measures, for a given
interval L, the least-square deviation of the spectral stair-
case from the best-fitting straight line [20]. In Fig. 3(b),
long-range correlations are much stronger in the irrevers-
ible case, with the data points also falling close to the GOE
prediction. For the reversible case, the singular values are
much less correlated and the spectrum much less rigid. This
indicates that the statistical fluctuations of the entanglement
spectra of irreversible systems are similar to those observed
in the energy spectrum of the so-called quantum chaotic
systems [2].
In Fig. 4 we also show the entanglement level statistics

for the particular case when one starts with initial factorized

states of the form jχðkÞi ¼ jψ ðkÞ
1 i ⊗ jψ ðkÞ

2 i ⊗ � � � ⊗ jψ ðkÞ
n i,

k ¼ 1; 2, where jψ ð1Þ
1 i ¼ j0i and jψ ð1Þ

j i ¼ ðj0i þ j1iÞ= ffiffiffi
2

p

for j ¼ 2;…; n, and jψ ð2Þ
j i ¼ ðj0i − j1iÞ= ffiffiffi

2
p

for
j ¼ 1;…; n. We evolve these n ¼ 16-bit states with
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FIG. 3 (color online). (a) The distribution of the spacing
between consecutive unfolded singular values obtained from a
bipartition at the middle of a n ¼ 16 qubit string at the end of the
heating period (Mh ¼ 512). Solid black circles are for two-qubit
gate heating and open red squares are for heating with a mixture
of two-qubit and Toffoli gates. Solid green line: GOE prediction.
Dashed blue line: Poisson distribution. Dotted-dashed maroon
line: Semi-Poisson distribution. Inset: The tail of the distribu-
tions. (b) The average spectral rigidity Δ3ðLÞ obtained from the
same spectra (a linear fit is used for the semi-Poisson line). A total
of 5000 realizations were used to compute the averages.
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M ¼ 512 gates chosen randomly from the set I3. The data
in Fig. 4 clearly conform to the GOE statistics, and we
observe that the disentangling algorithm again fails, indi-
cating that reversing the computation is extremely difficult.
In quantum mechanics, irreversibility, chaos, nonintegr-

ability and thermalization are phenomena often associated
with one another. Unfortunately, some of these notions are
ill defined, such as integrability and lack thereof, and the
associations are either weak or plagued by counterexam-
ples. For instance, irreversibility can be associated to both
chaotic and nonchaotic Hamiltonians [3,4] and there are
nonintegrable systems that do not thermalize [21].
Moreover, some of these concepts are only defined in
the context of time-independent Hamiltonian evolutions.
For instance, the energy levels of a chaotic Hamiltonian
show Wigner-Dyson statistics.
In this Letter we presented an alternative approach to the

question of irreversibility and complex behavior in quan-
tum systems that works purely at the wave-function level.
We did so by studying the eigenvalues of the reduced
density matrix of a subsystem, the so-called entanglement
spectrum [22]. We showed that (i) a disentangling
Metropolis algorithm provides a firm notion of reversibil-
ity, namely, the evolution can be inverted if the state can be
disentangled, and (ii) irreversibility arises when the level
statistics of the entanglement spectrum of a subsystem is
Wigner-Dyson.

On the other hand, in the example we studied where the
spectrum did not follow Wigner-Dyson statistics, we were
always capable of reverting the evolution, even with zero
knowledge about the quantum circuit. It is remarkable that
the length of the reverted circuit does not depend on the
length of the initial circuit, as long as the maximum
entanglement entropy is reached. In the disentangling
algorithm, we obtained similar results with the Rényi
entropy S2. This is remarkable because S2 is an observable
that can be measured [23,24], for example, in optical
lattices with ultracold atomic gases [25].
The results of this work motivate several questions and

applications. The method presented here is applicable to
any kind of quantum evolution, regardless of whether it
comes from a quantum circuit, a time-dependent or
-independent Hamiltonian system, or an open quantum
system. First of all, we can examine the behavior of the
entanglement level spacing statistics in integrable
Hamiltonian models both in the ground state or during
the time evolution after a quantum quench. Using tech-
niques such as the density matrix renormalization group,
one can study these models once integrability is broken. We
believe that our approach can shed new light on the notion
of integrability and lack thereof in quantum systems. The
possibility of studying quantum systems away from equi-
librium and their universal properties in dynamical phase
transitions [26] and many-body localization [27–29] is
another feature of the method that only involves wave
functions. Similarly, we can study the behavior of the
entanglement level spacing statistics at critical points of
integrable and nonintegrable systems [30,31]. The adiaba-
ticity of time-dependent quantum processes [32] can be
examined under the lens of the entanglement spectrum as
well, with potential applications to adiabatic quantum
computing. Moreover, one can study how the complexity
of the entanglement spectrum is related to quantum
algorithms capable of giving an exponential speedup
[33]. Under the same lens of the entanglement spectrum,
one should study the typicality of quantum chaos in random
states [34,35]. Entanglement is very ubiquitous in the
Hilbert space [14,34], and while this feature has been
crucial to show the typicality of thermalization in closed
quantum systems [36], this also means that entanglement
entropy is unable to characterize quantum irreversibility,
and the difference between integrable and nonintegrable
systems. Our results show that the understanding of
complex quantum behavior lies in the statistics of the
fluctuations of the entanglement level spacing.
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FIG. 4 (color online). The statistical fluctuations of the entan-
glement spectrum for initial product states jχð1Þi (orange empty
squares) and jχð2Þi (blue full circles) entangled with a mixture of
two-qubit and Toffoli gates (n ¼ 16,Mh ¼ 512). The solid green
line is the GOE prediction. (a) Distribution of unfolded singular
value spacings. Inset: Distribution tails. (b) Average spectral
rigidity Δ3ðLÞ. Statistical averages were performed over 5000
realizations.
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