
Dynamic Clustering and Chemotactic Collapse of Self-Phoretic Active Particles

Oliver Pohl1 and Holger Stark1,2
1Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany

2Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, California 93106, USA
(Received 13 March 2014; published 10 June 2014)

Recent experiments with self-phoretic particles at low concentrations show a pronounced dynamic
clustering [I. Theurkauff et al., Phys. Rev. Lett. 108, 268303 (2012)]. We model this situation by taking into
account the translational and rotational diffusiophoretic motion, which the active particles perform in their
self-generated chemical field. Our Brownian dynamics simulations show pronounced dynamic clustering
only when these two phoretic contributions give rise to competing attractive and repulsive interactions,
respectively. We identify two dynamic clustering states and characterize them by power-law-exponential
distributions. In case of mere attraction a chemotactic collapse occurs directly from the gaslike into the
collapsed state, which we also predict by mapping our Langevin dynamics on the Keller-Segel model for
bacterial chemotaxis.
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The collective motion of self-propelling objects is a
most fascinating subject that has been studied in a variety
of systems [1,2]. At the macro scale, collective patterns
occur, for example, in flocks of birds or fish schools [3–5],
while at the microscopic scale bacterial cells in an aqueous
environment generate intricate motional patterns [6–8]. To
understand basic features of structure formation in non-
equilibrium, systems with spherical or circular micro-
swimmers are investigated. A number of theoretical and
experimental studies have demonstrated that activity of
microswimmers alone can result in clustering and phase
separation [9–17] due to reducedmotility in dense aggregates
[9,15]. However, the colloidal density has to be large enough
that the characteristic time for a particle to join a cluster
becomes comparable to its rotational diffusion time needed
to dissolve from it [13]. Other investigations explore the
influence of hydrodynamics on collective motion [18–24].
In experiments with dilute suspensions of self-phoretic

active Janus colloids, dynamic clustering has been observed
[25,26]. In this novel nonequilibrium phenomenon, particles
constantly join and leave clusters that exhibit a very dynamic
shape. Since the colloids consume a chemical, they create a
nonuniform chemical field around themselves. The chemical
gradients initiate diffusiophoresis [27], whereby colloids can
attract each other as demonstrated in Ref. [26]. The
diffusiophoretic mechanism not only provides a novel
colloidal interaction, it also serves as a biomimetic version
of bacterial chemotaxis [28], where cells identify and swim
along chemical gradients. Autochemotactic cells typically
conglomerate in large aggregates or even exhibit a chemo-
tactic collapse [7,29–32].
Recent theoretical and experimental studies included

short-range attraction between active colloids and
observed clustering at low colloidal densities [26,33–35].
Reference [36] implements diffusiophoresis for concrete

surface properties of self-phoretic colloids and identifies
various states such as clumping and asters.
The work presented here has very much been inspired

by the experiments of the Lyon group [25]. The diffusio-
phoretic interaction has a translational and orientational
contribution. Using Brownian dynamics simulations, we
demonstrate that pronounced dynamic clustering occurs
only when these two contributions give rise to competing
attractive and repulsive interactions, respectively. We iden-
tify two dynamic clustering states and characterize them.
Otherwise, in case of mere attraction a chemotactic collapse
occurs directly from the gaslike state before pronounced
clusters are able to form. We support this result by mapping
our Langevin dynamics on the Keller-Segel model for
bacterial chemotaxis.
In our model we consider a dilute suspension of N self-

phoretic colloids confined in a quadratic box. For example,
by adding the chemical H2O2, they become active due to
self-electrophoresis [37] and the colloids move with a
swimming velocity v0. It depends on the concentration c
of the chemical that is a control parameter in the experi-
ments [38,39]. We assume that v0 does not change notice-
ably due to local inhomogeneities of c and consider it as a
system parameter [25,40]. In addition, the active colloids
experience diffusiophoretic forces along chemical gra-
dients, which are generated by the other colloids when
they consume the chemical. Since the colloids are bipolar, a
torque also aligns their swimming directions e along a
chemical gradient. The associated translational and rota-
tional diffusiophoretic velocities are given by [27]

vD ¼ ½hζi1 − hζð3n ⊗ n − 1Þ=2i�∇c; ð1Þ

ωD ¼ 9

4a
hζni ×∇c: ð2Þ
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Here the slip-velocity coefficient ζ, also called mobility
constant in Ref. [41], depends on the interaction of the
chemical with the colloid’s surface, h� � �i is an average over
the surface with local normal vector n, and a is the colloid
radius. The quadrupolar term in Eq. (1) vanishes for half-
coated colloids, whereas the angular velocity ωD with
hζni ∝ ei is nonzero since the strength of the chemical-
surface interaction and thereby the coefficient ζ is different
for the two halfs of the Janus colloids [42]. Using _ei ¼
ωD × ei and ðei ×∇cÞ × ei ¼ ð1 − ei ⊗ eiÞ∇c, we obtain
a system of two Langevin equations describing the two-
dimensional position ri and direction ei of the ith colloid in
the overdamped limit,

_ri ¼ v0ei − ζtr∇cðriÞ þ ξi; ð3Þ

_ei ¼ −ζrotð1 − ei ⊗ eiÞ∇cðriÞ þ μi × ei; ð4Þ
where we introduce ei≔hζni=jhζnij and the respective
translational and rotational diffusiophoretic parameters
ζtr≔hζi, ζrot≔9jhζnij=ð4aÞ. Thermal and intrinsic fluctua-
tions enter the equations by translational (ξi) and rotational
(μi) noise with zero mean and correlations hξi ⊗ ξii ¼
2Dtr1δðt − t0Þ and hμi ⊗ μii ¼ 2Drot1δðt − t0Þ. We model
the active particles as hard spheres; so, whenever they start
to overlap, we separate them along the line connecting their
centers. The chemical field diffuses and has sinks at the
positions of the particles since they consume the chemical
[43]: _cðrÞ ¼ Dc∇2c − k

P
N
i¼1 δðr − riÞ. Since the chemi-

cal diffuses much faster than the colloids move, a stationary
density field develops at each instance,

cðrÞ ¼ c0 −
k

4πDc

XN

i¼1

1

jr − rij
: ð5Þ

In experiments, active colloids settle on a surface and swim
in two dimensions while the chemical field diffuses freely
in half-space. Implementing zero flux at the surface by
image colloids does not change the form of Eq. (5). The
same holds when we integrate the concentration over a
layer with thickness twice the colloid radius a to make the
relevant concentration field two-dimensional.
Within clusters of active colloids, the concentration field

cannot freely diffuse. So, whenever a colloid is surrounded
by six closely packed neighbors, we introduce for it a
screened chemical field exp½−ðr − ξÞ=ξ�=r, with the
screening length ξ ¼ 2að1þ ϵÞ. In our simulations we
typically take ϵ ¼ 0.3 and have checked that our results do
not change when ε is changed by 50%. We rescale time and
length by tr ¼ 1=ð2DrotÞ and lr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtr=Drot

p ¼ 2.33a.
respectively. For historical reasons this is above the
experimental value of 1.79a [25], while the thermal
value is 1.15a. Again, the following results do not change
drastically, if we adjust the value. The noise intensities
for rescaled ξi and μi become one and we are left
with three essential parameters: the Péclet number

Pe ¼ v0=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DtrDrot

p Þ and reduced translational as
well as rotational diffusiophoretic parameters
ζtrk=ð8πDtrDcÞ → ζtr and ζrotk=ð8πDc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DtrDrot

p Þ → ζrot,
respectively, for which we keep the same symbols.
Note that in our model each active colloid creates a

chemical sink. So, for ζtr > 0 and ζrot > 0 it pulls and
rotates other colloids towards itself, which means an
effective attraction. At boundaries of the simulation box,
we let colloids move with a randomly chosen direction
back into the box. Following experiments [25], we inves-
tigate dilute systems with an area fraction of σ ¼ 5% and
simulate a total of 800 particles. We have checked that a
larger number does not change our results qualitatively
as long as the area fraction is maintained. Finally, we
choose the swimming velocity v0 in the range 2–4.5 μm=s
as in experiments [25] corresponding to Péclet num-
bers Pe ¼ 10–22.
In Fig. 1 we illustrate typical particle configurations for

increasing translational diffusiophoretic parameter ζtr. At
ζtr ¼ 0 (upper left) the active colloids hardly cluster since
there is no phoretic attraction between them. They assume a
gaslike state with a mean cluster size Nc close to 3. To
determine Nc, we define a cluster as an assembly of more
than two colloids and average over many snapshots at
different times. Thus, by definition Nc ≥ 3. In contrast, at
large ζtr (bottom right) the system collapses into a single
large cluster similar to the chemotactic collapse that occurs
in bacterial systems [29,44]. In between, we observe
dynamic clustering (top right, bottom left). Motile clusters
form that strongly fluctuate in shape and size and ultimately
dissolve again (see movies 1 and 2 in the Supplemental

FIG. 1 (color online). Snapshots of colloid configurations for
increasing ζtrans at ζrot ¼ −0.38 and Pe ¼ 19. Top left: gaslike
state. Top right: dynamic clustering 1. Bottom left: dynamic
clustering 2. Bottom right: collapsed state. Nc is the mean
cluster size.
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Material [45]). In Fig. 2 we plot a state diagram in the
phoretic parameters ζtr, ζrot, where we also color code the
mean cluster size Nc. At ζrot ¼ 0 the maximal dynamic
cluster size just before the collapse isNc ≈ 5. When we turn
on rotational diffusiophoresis with ζrot > 0, the swimming
direction e of a free active colloid points towards a cluster
(chemical sink), which further supports the formation of
one cluster. This explains the fact that in Fig. 2 the collapse
occurs for smaller ζtr when ζrot increases. The mean cluster
size just before the collapse decreases and dynamic
clustering is hardly visible. In contrast, at ζrot < 0 active
particles rotate away from chemical sinks and thus an
effective repulsion is introduced. Once active colloids join a
cluster, their swimming direction rotates outwards and the
colloids can leave the cluster again if the translational
phoretic attraction is not too large. This balance of effective
phoretic attraction and repulsion is the cause for pro-
nounced dynamical clustering with large cluster sizes.
Interestingly, the state diagram in Fig. 2 indicates two
clustering states: one where cluster sizes up to 6.5 are
observed (see snapshot at top right in Fig. 1) and a second
clustering state where much larger dynamic clusters occur
(see snapshot at bottom left in Fig. 1).
To further quantify the two dynamic clustering states 1

and 2, we determine the cluster-size distribution PðnÞ. In
Fig. 3 we plot it for fixed rotational phoretic parameter ζrot ¼
−0.38 and increasing translational coupling ζtr. For pure
steric interaction (ζtr ¼ 0, blue curve), an exponential decay
is predominant. Closer to the transition line between
dynamic clustering states 1 and 2 in Fig. 2, the distribution
follows a power law at small n, before it falls off exponen-
tially (orange and red curves in Fig. 3). Indeed, we can fit our
results by PðnÞ ¼ c0n−β expð−n=n0Þ with exponent
β ¼ 2.1� 0.1, which gradually decreases for more negative
ζrot. This fit is robust against increasing particle number as
demonstrated in the Supplemental Material [45]. With
further increase of ζtr we observe that the distribution
PðnÞ develops an inflection point (green curves) and
we have to use a sum of two power-law-exponential curves
to fit our distributions, PðnÞ ¼ c1n−β1 expð−n=n1Þ þ
c2n−β2 expð−n=n2Þ with β1 ¼ 2.1� 0.2 and β2 ≈ 1.5.

This defines the dynamic clustering state 2, where very
large clusters coexist with smaller ones and individual
particles. The transition in the cluster-size distribution is
observed for all negative ζrot. Typically, the mean cluster size
Nc increases strongly in state 2 as indicated in the inset of
Fig. 3. In contrast, for ζrot > 0 the system exhibits the
collapse to a single cluster before large dynamic clusters can
appear. When we turn off screening of the chemical field
within clusters, the clustering state 2 disappears completely
as demonstrated in the Supplemental Material [45].
Similar cluster-size distributions including the transition

indicated by the occurrence of an inflection point have been
observed in experiments on gliding bacteria [7]. However,
in this work bacterial density was varied in a system with
pure hard-core interactions causing nematic alignment. In
contrast, we vary the strength of the diffusiophoretic
coupling ultimately leading to the collapsed state, which
has not been observed in Ref. [7].
The experiments with diffusiophoretic coupling showed a

linear scaling of the mean cluster size with Pe: Nc ∼ Pe [25].
It appears counterintuitive that at low area fractions of
σ ¼ 5% faster colloids generate larger clusters and indeed
the simulations of our model show the contrary behavior. In
Fig. 4 we plot a state diagram in ζtr versus Pe while ζrot is
kept constant. Clearly, for constant ζtr large clusters dis-
appear with increasing Pe. However, large activity Pe is
necessary for observing dynamic clustering. At small Pe
only small cluster sizes occur with increasing ζtr, while at
sufficiently large Pe we observe both dynamic clustering
states.
In the experiments of Ref. [25] colloidal activity

increases with the concentration c0 of the activating
chemical H2O2. According to Ref. [39], the swimming
velocity scales as c0 ∼ v0 ∝ Pe. The concentration c also
couples to our reparametrized diffusiophoretic parameters
ζtr and ζrot through the reaction rate k introduced in Eq. (5).
In the following, we assume Michaelis-Menten kinetics for
the reaction rate in the linear regime well before saturation,
k ∼ c0, and thus find ζtr ∼ c0 ∼ ζrot. So, the linear

FIG. 2 (color online). State diagram: ζtr versus ζrot at Pe ¼ 19.
The mean cluster size Nc is color coded.

10 5

10 4

10 3

10 2

10 1

1 5 10 20 50 100 200

100

tr

tr

0
8.8
13.4
15.4
16.3
18.2

P (n)

n

0 5 10 15
0
5

10
15
20

tr

N
c

Transition

FIG. 3 (color online). Cluster-size distributions PðnÞ for in-
creasing translational phoretic parameter ζtr at Pe ¼ 19 and
ζrot ¼ −0.38. ζtr assumes the values 0, 8.8, 14.5, 15.4, 16.3,
and 18.2. The transition between dynamic clustering states 1 and
2 occurs between the red and green curves. Inset: mean cluster
size Nc versus ζtr . The transition is indicated.
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dependence of the parameters Pe, ζtr, and ζrot on c0 defines
a line in the parameter space. In this space the dynamic
clustering states 1 and 2 are separated by a plane. We
choose different lines that always hit the transition plane
and plot in Fig. 5 the mean cluster size Nc versus Pe along
the lines. The blue and purple curves show the strong
increase of Nc when the clustering state 2 is entered, since
the respective lines hit the transition plane under angles
closer to 90°. Making this angle smaller, the increase is
more modest. In particular, the green graph shows an
almost linear increase of Nc in the Pe range from 10 to 20.
So, Fig. 5 demonstrates that the relation between Nc and
swimming velocity does not have a simple dependence.
To gain some more insight into the transition to the

collapsed state, we formulate a Smoluchowski equation for
the full spatial and orientational probability distribution.
We determine its orientational moments and derive an
equation for the spatial colloidal density Pðr; tÞ coupled to
the chemical field cðr; tÞ, similar to the approach in
Ref. [46,47]: _P ¼ ζeff∇ · ðP∇cÞ þDeff∇2PþOðð∇cÞ2Þ.

Details are given in the Supplemental Material [45]. This
equation is reminiscent of one relation of the Keller-Segel
model [29] used to describe the chemotaxis of bacteria but
here with effective chemotactic and diffusion constants:
ζeff ¼ ζtr þ ðζrotv0=2DrotÞ and Deff ¼ Dtr þ ðv20=2DrotÞ. In
two dimensions it exhibits an instability of the uniform
state towards a chemotactic collapse when its parameters
satisfy ðζeffkσ=DcDeffÞ > b, where σ is the area fraction of
the colloids and b is a constant that depends on the
geometry of the system [44,48]). In our unitless parameters
the condition becomes 8πσðζtr þ ζrotPeÞ=ð1þ 2Pe2Þ > b.
For constant Pe, this agrees nicely with the nearly straight
transition line in Fig. 2 between the gaslike and the
collapsed state at ζrot > 0. However, the condition does
not reproduce the straight transition line in Fig. 4. The
reason is that at ζrot < 0 pronounced clustering occurs
before the collapse takes place. In the Supplemental
Material [45] we test the collapse condition in regions
where dynamic clustering is absent (ζrot > 0). Dynamic
clustering, however, cannot be described by the Keller-
Segel equation. Clustering occurs when a colloid moves
towards the rim of a cluster and rotates away from it
(ζrot < 0), and then a delicate balance between swimming
away from the cluster and diffusiophoretic attraction by the
cluster sets in: v0 ∼ ζtrj∇cj. This mechanism crucially
depends on ballistic swimming with velocity v0. It cannot
be described by our Keller-Segel equation since v0 only
appears in effective chemotactic and diffusion parameters.
Assuming that the colloid attaches directly to two particles
at the rim of a cluster, we estimate in our reduced units
j∇cj ≈ 1=ð2a=2.33aÞ2 ¼ 1=0.73 and obtain a condition for
dynamic clustering: ζtr ≈ 0.73Pe. This simple estimate
reproduces the straight transition line between clustering
states 1 and 2 in Fig. 4 and the region where clustering
occurs. A more thorough explanation of dynamic clustering
might use the kinetic approach of Refs. [7,49] but this is
beyond the scope of this Letter.

To conclude, self-phoretic active colloids mediate dif-
fusiophoretic interactions between each other. They consist
of a translational and an orientational part, which together
with the active swimming can act either attractively or
repulsively. When they are both attractive, the colloids
show a transition from the gaslike to a collapsed state
reminiscent of a chemotactic collapse in bacterial systems
as our mapping on the Keller-Segel model demonstrates.
When translational and rotational diffusiophoresis generate
counteracting attraction and repulsion, two dynamic clus-
tering states with characteristic cluster-size distributions are
stabilized similar to the dynamic clustering observed in the
experiments of Ref. [25].
The present system mimics chemotaxis in bacterial

colonies without relying on a complex signalling pathway
necessary in cells. Thereby, it may help to explore
chemotactic structure formation and design novel dynamic
patterns in bacterial colonies [6].

FIG. 4 (color online). State diagram plotting mean cluster size
Nc against Péclet number Pe and chemotactic control parameter
ζtr . ζrot ¼ −0.38. The color code indicates the mean number of
particles Nc in a dynamic cluster.
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FIG. 5 (color online). Mean cluster size Nc versus Pe for
different lines in the full parameter space defined via a para-
metrization with x ∈ ½0; 1�. We vary Pe as in experiments of
Ref. [25], Pe ¼ 9.5þ 11.5x, and choose ζtr ¼ 4.8þ 16.6x and
ζrot ¼ −0.16 − ζ0x, where the parameter ζ0 defines the different
graphs. The transition between clustering states 1 and 2 roughly
occurs at the intersection of the two straight lines.
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