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We present a theoretical and computational analysis of the rheology of networks made up of bundles of
semiflexible filaments bound by transient cross-linkers. Such systems are ubiquitous in the cytoskeleton
and can be formed in vitro using filamentous actin and various cross-linkers. We find that their high-
frequency rheology is characterized by a scaling behavior that is quite distinct from that of networks of the
well-studied single semiflexible filaments. This regime can be understood theoretically in terms of a length-
scale-dependent bending modulus for bundles. Next, we observe new dissipative dynamics associated with
the shear-induced disruption of the network at intermediate frequencies. Finally, at low frequencies, we
encounter a region of non-Newtonian rheology characterized by power-law scaling. This regime is
dominated by bundle dissolution and large-scale rearrangements of the network driven by equilibrium
thermal fluctuations.
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The mechanical properties of cells are largely deter-
mined by the cytoskeleton, a dynamic network of biopol-
ymers, and its bundles, held together by transient linker
proteins. The principal constituent of the cytoskeleton is
the biopolymer filamentous actin (F-actin) [1]. In F-actin
networks, the thermal persistence length of the constituent
filaments is much longer than the typical distance between
consecutive cross-links along a given filament, leading to
the formation of a semiflexible network, with mechanical
properties distinct from the better known gels of synthetic
and highly flexible polymers [2]. In addition to their having
implications for cellular mechanics, the study of F-actin
networks has served as the standard model for examining
the basic physics of such semiflexible networks, in part,
because of the ability to reconstitute purified F-actin
networks under controlled in vitro conditions and precisely
measure their mechanical properties. As a consequence, the
theoretical understanding of the elastic properties of these
networks in thermal equilibrium is well advanced [3–7].
One of the key insights was that small transverse thermal

fluctuations dominate the single-filament compliance and
the high-frequency rheology of permanently cross-linked
networks of single filaments, leading to a universal power-
law rheology [5], which was confirmed experimentally
[8,9]. Another consequence was that the networks’ elastic
moduli depend nonlinearly on the filament concentration
[3,10,11]. There is, however, increasing evidence that this
theory cannot account adequately for the rheology of
networks composed of bundles of semiflexible filaments
cross-linked by transient linkers (e.g., [12]). These are the
types of networks that are generally encountered in in vitro

systems at higher linker concentrations [13,14], and they
are also frequently observed in the cytoskeletons of
eukaryotic cells. Networks of bundles with higher concen-
trations of transient linkers are generically in a nonequili-
brium state: the networks’ geometry slowly evolves
towards, but is never observed to reach, the equilibrium
state of minimum free energy [15]. One would expect such
transient networks to have a low-frequency rheology that is
history and sample dependent with crossover to Newtonian
rheology at very low frequencies. For high frequencies, one
would expect to recover the universal single-filament
rheology. In this Letter, we present the results of finite
element Brownian dynamics simulations of transient bun-
dle networks formed from semiflexible filaments linked by
isotropic, transient linkers that show that transient bundle
networks are characterized by unique rheological proper-
ties that violate these expectations.
The mechanics of the filaments were treated using finite

elements to discretize a nonlinear beam model that fully
accounts for bending, torsion, shear, and extension of the
filaments. Initially straight filaments of equal length lf ¼
4 μm and persistence length lp ¼ 9.2 μm were inserted
into the cubic simulation box with sides of length 6 μm and
having periodic boundary conditions. Linkers, introduced
at fixed concentrations, were treated as short, stiff, stretch-
able rods (spring constant k× ¼ 0.122 pN=nm) of length
ϵ ¼ 100 nm, also discretized with finite elements. Each
linker terminates at two reactive sites that were allowed to
interact with complementary reactive sites spaced periodi-
cally along the filaments via chemical reactions modeled by
Poisson processes with fixed, force-independent rate
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constants kon and koff . Including force-dependent unbind-
ing rates [16] did not appreciably alter the results, at least
at small imposed strains. The rate constants were given
values typical for F-actin linker protein binding or unbind-
ing. The details of the Brownian dynamics finite element
code can be found in Refs. [17,18] and in the Supplemental
Material [19].
Figure 1 shows a typical network comprised of 360

filaments, corresponding to an F-actin concentration of
cf ¼ 4 μM. Linkers with a concentration of ∼0.07 μM are
shown as blue and red dots when bound to one filament or
to two filaments (green), respectively. Most doubly bound
linkers form intrabundle connections, while only a few link
two different bundles. The system was initially allowed to
relax at a temperature of T ¼ 293 K over time intervals
corresponding to ∼25 min in physical F-actin and linker
solutions. None of the resulting bundle network systems
were in thermal equilibrium, which would be a single large
bundle [20]. The observed structures were closely similar
to bundled F-actin networks [21], and bundle thicknesses
were comparable to the ones found in experiments [22,23].
After this initial evolution, all networks were exposed to

a sinusoidal shear strain with an amplitude of 1% and with a
frequency range of 10−2–106 rad=s; we verified a linear
stress-stress relation for this strain amplitude. The resulting
stress was then measured to obtain the rheological spec-
trum, as shown in Fig. 2, which features two sets of
simulation data corresponding to different linker off
rates. The higher off-rate simulation agrees well with a
rheological study of actin–α-actinin-4 networks [24].
The lower off-rate simulation agrees well with the

intermediate-frequency data of an actin-fascin network
[13]. For each experimental data set, we made a single
adjustment to the modulus scale to account for differences
in network density and a single adjustment to the frequency
scale to fit the mean off rate of the physiological linkers.
For a given linker off rate, the rheological spectrum

may be usefully divided into three frequency ranges
corresponding to different dynamical regimes of the net-
work. Beginning at the highest frequencies, one encounters
a regime where the rheology is dominated by single-bundle
dynamics where the cross-linkers may be considered to be
fixed because ω=koff ≫ 1. Importantly, the rheology of
single-bundle dynamics differs fundamentally from the
rheology of single-chain dynamics that is characterized
by universal power-law behavior. At intermediate frequen-
cies, dissipation is dominated by shear-induced bond
breaking, leading to a peak in G″ðωÞ reminiscent of a
simple Maxwell fluid [25]. Important features of this
intermediate regime are large, nonuniversal, sample-to-
sample variations of G″ðωÞ for networks having the same
filament and cross-linker concentrations [19]. Finally, at
even lower frequencies, a new rheology regime is encoun-
tered where G0ðωÞ, G″ðωÞ ∼ ω1=2. This regime is charac-
terized by bundle dissolution and large-scale collective
thermal fluctuations of the network, possibly related to
broken orientational symmetry of the network. We now
discuss separately these three regimes.
High-frequency regime.—The high-frequency scaling

regime of single-filament networks is understood as a form
of entropic elasticity with the applied stress stretching out
thermally excited transverse undulations on the filaments,

FIG. 1 (color online). Example of a bundle network as prepared
for rheological measurements. The simulation cube
(V ¼ 216 μm3) has periodic boundary conditions and 360
filaments (cf ¼ 4 μM) that are in chemical equilibrium with a
solution of linkers at a concentration cl ≈ 0.07 μM. Singly bound
linkers (blue) and doubly bound linkers (red) are shown.

FIG. 2 (color online). Comparison of simulated rheological
spectra to experiments. Simulation parameters are cf ¼ 4 μM,
cl=cf ¼ 0.017, kon ¼ 90 s−1, and koff ¼ f2; 0.07g s−1. We en-
counter three distinct regimes. At high frequencies (ω > ω1), we
see scaling behaviors G0 ∼ ω0.93 and G″ ∼ ω0.55. The inset shows
G0 and G″ of the same system without linkers. The expected ω3=4

scaling relation is recovered. At intermediate frequencies
(ω2 < ω < ω1), there is a local maximum in G″ and large
sample-to-sample variations. At low frequencies, there is again
a power-law regime.
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which leads to the ω3=4 scaling relation [3,5,6,9]. Since the
same dynamics should apply to bundles, one imagines that
the same scaling relation would apply, albeit with a higher-
frequency scale due to the longer effective persistence
length lpðNÞ of N-filament bundles. The bending modulus
of such bundles linked by harmonic springs, however, is
scale dependent [26–28]. When such a scale-dependent
bending stiffness is incorporated into the single-filament
formalism of Ref. [5], a new high-frequency scaling regime
results, reflecting the bundled nature of the network.
Following that formalism, we compute the complex modu-
lus GðωÞ of a network of nodes connected by equal-sized
composite bundles in terms of the frequency-dependent
complex extensional compliance αðωÞ of single bundles.
Given these assumptions and a network with mesh size ξ
(and length density ρ ∼ ξ−2), the complex modulus is
given by

GðωÞ ¼ ρξ

15αðωÞ − iηω; ð1Þ

where η is the background solvent viscosity. The exten-
sional compliance of a bundle produced by the stretching
out of overdamped transverse bending fluctuations can
be written as a sum over modes with wave number
qn ¼ nπ=ξ [5,26]:

αðωÞ=αð0Þ ¼ 90

π4
X∞

n¼1

1

n4 − iω
2ω̄ðnÞ

; ð2Þ

with αð0Þ ¼ ðξ4=90kBTlpðNÞ4Þ being the zero-frequency
compliance of a bundle with effective persistence length
lpðNÞ ¼ N2lp and ω̄ðnÞ the relaxation rate of the nth mode.
The specific form of ω̄ðnÞ is in general contingent upon the
model used for the composite bundle but in the limit of
large N and for fixed bundle diameter D ¼ bN1=2, where b
is the filament diameter and ω̄ðnÞ in general approaches the
Timoshenko limit form [29]

ω̄ðnÞ=ω1 ¼
N2

1þ Δn2
: ð3Þ

The frequency scale ω1 ¼ ðκπ4=ζξ4Þ is the relaxation rate
of the n ¼ 1 mode of a single filament with length ξ and
friction coefficient per unit length of filament ζ. The
dimensionless constant Δ ¼ Nðπ2=12ÞðEb2=δk×Þðδ=ξÞ2
depends on the Young’s modulus E of the filaments, the
filament radius b, the distance δ between linker molecules,
and the linker spring constant k×. The parameter Δ
determines the high-frequency rheology. For Δ ¼ 0,
GðωÞ reproduces single-filament scaling with GðωÞ ∝
ω3=4 (inset of Fig. 2). For Δ ≫ 1, the single-filament
scaling regime disappears and only the asymptotic high-
frequency bundle scaling of G0ðωÞ≃ ω1=2 and G″ðωÞ≃ ω
remains. At intermediate values of Δ, numerical evaluation

produces a frequency range with intermediate scaling
exponents due to a crossover from the single-filament
scaling to the asymptotic high-frequency bundle behavior.
The parameter Δ thus can be viewed as a rheologically

accessible measure of the degree of bundling in the
network. If we use Δ as a fitting parameter, then the
high-frequency dynamics displayed in Fig. 2 would be
consistent with 1.5 ≥ Δ ≥ 0.4. An evaluation based on the
filament and linker elasticity and an estimate of the net-
work’s mesh size yield Δ ≈ 2 [19]. The comparison
between simulation, experiment, and theory, as shown in
Fig. 2, reveals that current rheological studies are in a
crossover regime and have not yet reached the true high-
frequency power-law regime characteristic of transient
bundle networks.
Intermediate-frequency regime.—For frequencies

ω < ω1, Eq. (2) predicts a frequency-independent plateau
modulus G0ðωÞ≃ ðρξ=15αð0ÞÞ and a decreasing “fluid-
like” G″ðωÞ ∝ ω, but neither is observed in Fig. 2. The
reason is that even weak oscillatory shear strains have a
highly destructive effect on the ability of the transient
linkers to establish double bonds. Even at frequencies well
above the off rate koff , the interval distribution between
binding sites initially bound by cross-linkers is already
being affected (see Fig. 3), although the overall network
geometry remains intact. As shown in the inset, network
bundles do eventually peel apart at sufficiently low ω
when the low-frequency regime is approached. In the
Supplemental Material [19], we show that the key features
of the intermediate regime can be understood on the basis
of a simple model of two parallel filaments connected by an
array of doubly bound linkers similar to that of Ref. [24]. A
striking feature of the intermediate regime is that different
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FIG. 3 (color online). The distribution of distances between
pairs of initially cross-linked binding sites during oscillatory
shear at frequencies of ω ∈ ½20 000π; 0.02π� rad=s showing that
the network becomes more sparsely cross-linked at low frequen-
cies. Inset: Binding site pairs (red and blue) with highlighted
distances (green) between ruptured cross-links at sites of bundle-
bundle detachment for the ω ¼ 0.02π rad=s case.
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samples with the same parameters produce significantly
different complex moduli GðωÞ, in agreement with the
expectation that at lower frequencies, the system becomes
increasingly dependent on preparation history.
Low-frequency regime.—In the limiting regime

ω ≪ koff , we did not observe the expected terminal
Newtonian rheology with G″ðωÞ ∝ ηω. Rather, Fig. 2
shows a low-frequency power-law rheology where G0,
G″ ∼ ω1=2. This behavior has been previously observed
in simulation [24] as well as in experiment [30,31] and is
related to transient cross-linking [32]. It was interpreted as a
consequence of single-filament dynamics connected to a
background of other filaments by transient linkers [24].
According to this scaling relation, one would expect that,
after a step strain, the stress should relax as a power law
1=t1=2. The computed stress relaxation following a step
strain, shown in Fig. 4(a), presented us with a first surprise.

After an initial relaxation, spontaneous stress fluctuations
were so large that it was difficult to ascertain the expected
t−1=2 decay of the mean stress. To characterize these low-
frequency fluctuations, we computed the principle axes of
the moment of inertia tensor. If the system were fluid, the
principal axes would perform rotational Brownian motion
with a power spectrum jϕðωÞj2 ∝ 1=ω2. For an elastic
network, jϕðωÞj2 would be Lorentzian. The best fit to the
measured power spectrum, however, is given by the
subdiffusive form jϕðωÞj2 ∝ 1=ω. These slow orientational
fluctuations of structures on the scale of the simulation box
indicate that large-scale collective motion plays a key role
in the low-frequency regime, in contrast to the single-
filament interpretation. We speculate that the slow dynam-
ics of the principal axes could be related to thermally
excited Goldstone modes associated with orientational
symmetry breaking by the bundle network on length scales
of the size of the simulation box.
In order to verify whether or not these stress fluctuations

are enhanced by the nonequilibrium aging of the network,
we evaluated the fluctuation-dissipation theorem (FDT),
which provides a connection between the mean square of
the amplitude of the stress fluctuations and GðωÞ:

hjSðωÞj2i ¼ 2kBT
ω

G″ðωÞ: ð4Þ

In Fig. 4(b), we see that the stress fluctuation amplitude
exceeds the value predicted by the FDT at lower frequen-
cies; we detect nonequilibrium, large-scale network reor-
ientations that are associated with its structural aging and
incompatible with equilibrium motion. As expected, if
one speeds up the network’s structural relaxation by
increasing the linker off rate from 0.01 s−1 [used in
Figs. 4(a) and 4(b)] to 0.1 s−1, the observed stress fluctua-
tions are reduced and, in fact, now consistent with the FDT
prediction—see Fig. 4(c). The overall structure of these
networks, however, has not yet equilibrated, which is
consistent with experiment [33].
In summary, we have presented an analysis of the

rheology of transiently cross-linked semiflexible networks
made up of bundles. The mechanics of such bundle
networks are quite distinct from those composed of
individual semiflexible filaments. We propose that the
rheology of such systems can be understood in terms of
single-bundle dynamics in the high-frequency regime, in
terms of dissipative bond-breaking dynamics at intermedi-
ate frequencies, and in terms of collective orientational
fluctuations and large-scale network rearrangements at low
frequencies. The altered rheology of bundle networks will
have implications for the mechanics of cells [34] and for
novel synthetic materials [28,35].
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FIG. 4 (color online). (a) Shear stress relaxation and
fluctuations after a step strain at t ¼ 0 s. The G0 ∼ G″ ∼ ω1=2

scaling relation predicts a 1=t1=2 stress decay. For t > 200 s,
spontaneous large-amplitude fluctuations overwhelm the mean
stress and are accompanied by subdiffusion of the principle axes
of the moment of inertia tensor (inset). (b) Frequency-dependent
mean square amplitude of the stress fluctuations (red squares)
in the low-frequency regime at koff ¼ 0.01 s−1 compared to
the prediction of equilibrium fluctuation from the fluctuation-
dissipation theorem [Eq. (4)] (dashed blue line). (c) The
nonequilibrium fluctuation enhancement disappears at an in-
creased koff ¼ 0.1 s−1.
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