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The swelling equilibrium of Olympic gels, which are composed of entangled cyclic polymers, is studied
by Monte Carlo simulations. In contrast to chemically cross-linked polymer networks, we observe that
Olympic gels made of chains with a larger degree of polymerization, N, exhibit a smaller equilibrium
swelling degree, Q ∝ N−0.28ϕ−0.72

0 , at the same polymer volume fraction ϕ0 at network preparation. This
observation is explained by a desinterspersion (reorganization with release of nontrapped entanglements)
process of overlapping nonconcatenated rings upon swelling.
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Olympic gels [1,2] are networks made of cyclic
polymers (“rings”) connected by the mutual topological
inclusion of polymer strands, see Fig. 1, with their elastic
properties depending exclusively on the degree of entan-
glements caused by the linking of the rings. This particular
difference from conventional polymer networks and gels
makes these materials an interesting model system, since
the pristine effect of entanglements on thermodynamic
properties of polymers is accessible. In particular, such
gels could reveal the role of entanglements for equilibrium
swelling of polymer networks, which is an outstanding
problem in polymer physics. Since the term Olympic gels
has been coined by de Gennes [2], however, the challenge
of synthesizing such materials has not yet been mastered,
although possible pathways for their synthesis have been
proposed [1].
In the present Letter, we construct Olympic gels,

characterize their topological state, and simulate isotropic
swelling in athermal solvent. We find that the equilibrium
degree of swelling of Olympic gels is described by a
negative power as a function of the degree of polymeri-
zation, N, of the rings, see Fig. 2, in marked contrast to
standard models of network swelling [3]. We will show that
this result is a direct consequence of a desinterspersion
(reorganization with release of nontrapped entanglements)
process originally proposed by Bastide [4], which allows
polymer rings to swell in part at no elastic deformation.
First, let us recall the essential predictions of the Flory-

Rehner (FR) [5] model for equilibrium swelling of polymer
networks. The latter can be characterized by the equilib-
rium degree of swelling,Q, which is defined by the ratio of
the polymer volume at swelling equilibrium with respect to
the pure polymer volume in the dry state. In the FR model,
it is assumed that the net change of free energy upon
swelling is solely given by the sum of the change of free
energy of mixing of the solvent with the polymer and the
free energy change of an affine elastic deformation of the
network strands. One can express this condition by equat-
ing the elastic osmotic pressure resulting from an isotropic

deformation of Gaussian chains and the osmotic pressure
of mixing, Πel ¼ Πmix. The gel is prepared at a polymer
volume fraction ϕ0, where the elastically active network
chains (or rings) have an average extension of R0. The
equilibrium degree of swelling of a polymer gel with an
average elastic strand length, N, is reached at a polymer
volume fraction ϕ < ϕ0, for which network strands in
solution exhibit an extension Rref solely due to excluded
volume interactions. With these parameters, the elastic
pressure can be written as

ΠelðϕÞ ≈
kT
b3
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Here, λ denotes the linear deformation ratio of the strands,
λ3 ¼ ϕ0=ϕ, k is the Boltzmann constant, T the absolute
temperature, and b denotes the root mean square length of a
Kuhn segment. The osmotic pressure due to mixing is given
by Des Cloizeaux’s law [2]

ΠmixðϕÞ ≈
kT
b3

ϕ3ν=ð3ν−1Þ: ð2Þ

Both equations take into account the excluded volume
effect for swelling in good solvent with the exponent
ν ≈ 0.588 which is most appropriate for the present
simulations. Equating both expressions one obtains the
equilibrium degree of swelling

FIG. 1 (color online). Sketch of an Olympic gel.
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Q ¼ 1

ϕ
≈ N3ð3ν−1Þ=4ϕ−1=4

0 ≈ N0.57ϕ−0.25
0 : ð3Þ

The hallmark of this textbook result [3] is that the equilib-
rium degree of swelling grows with increasing strand length
N and decreases weakly with increasing polymer volume
fraction ϕ0 at preparation state. Equation (1) is derived by
assuming an affine deformation of the chain ends, and thus,
it is assumed that no swelling is possible without the free
energy penalty of elastic deformation.
In Fig. 2, we display our simulation results for the

equilibrium swelling of Olympic gels. In contrast to the FR
prediction, we observe a reduction of the degree of swelling
with increasing chain length, see inset of Fig. 2. The best
overlap of all simulation data is consistent with an ad hoc
scaling law given by

Q ≈ N−0.28ϕ−0.72
0 ; ð4Þ

as shown in the main plot of Fig. 2. We will explain this
unexpected behavior in this Letter after a more detailed
analysis of the simulation data.
To simulate Olympic gels, we used a GPU version [6] of

the bond fluctuation method [7], which is an efficient
simulation method for polymers in the semidilute and
concentrated regime [8]. The preparation of the samples
is identical to our previous work [9] for the concatenated
series of melts except for using a nonperiodic box as a
simulation container. By including diagonal moves in the
preparation step of Olympic gels, we allow the crossing of
bonds without a change in the excluded volume constraints.
By returning to the original set of moves, the topology
created is conserved. The key parameters of the samples are
summarized in Table I. In the present Letter, we focus on
samples with an average number of concatenations per ring
fn ≥ 2, for which we can identify a well developed domi-
nant largest cluster (gel). fn is determined as described in
[9] and follows the prediction

fn ∝ ϕν=ð3ν−1Þ
0 N ∝ ϕ0.77

0 N: ð5Þ

After preparation, the networks are placed into the middle
of a large simulation container and swollen to equilibrium,
which was monitored by the drop in the polymer volume
fraction near the middle of the gel. Empty lattice sites
model athermal solvent. The equilibrium degree of swell-
ing Q is determined by analyzing ϕ−1 for the innermost
50% of the monomers. We consider ϕ ¼ 0.5 as melt
concentration with the reference valueQ ¼ 1. The polymer
volume fraction at swelling equilibrium for any sample is
below 1=16, which justifies a semidilute approximation of
chain conformations. The overlap number of a given ring,
P, is determined by counting the centers of mass of other
rings in a sphere with radius D around the center of mass
of each ring, whereby D is the average distance of two
opposite monomers of a ring. For convenience, we also use
D to measure the deformation of the rings. Note that
the chains are only weakly deformed with a maximum
D=D0 ≈ 2.07 for all samples.
In Fig. 3, we display the apparent affine deformation part

Q̄a=Q of swelling given by

Q̄a ¼ ðD=D0Þ3; ð6Þ

where D0 is the ring extension at preparation conditions.
According to the FR model, we haveQ≡ Q̄a per definition
[3,10]. Figure 3 displays Q̄ as a function of the degree
of equilibrium swelling. Large values forQ are obtained by
a nonaffine swelling while the limit of small Q is well
described by an apparently fully affine deformation of the
chains. The data of Fig. 3 indicate a relation in the vicinity
of Q̄a=Q ∝ Q−1.95 for all samples of our Letter with a small
additional correction as a function of ϕ0.
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FIG. 2 (color online). The scaling of the equilibrium degree of
swelling. Inset: unscaled data. The line indicates the proposed
scaling Q ∝ N−0.28ϕ−0.72

0 .

TABLE I. N is the degree of polymerization of the rings,M the
number of rings per sample, ϕ0 the polymer volume fraction at
preparation conditions, fn the average number of concatenated
pairs of rings per ring, Q the equilibrium degree of swelling, D2

and D2
0 are the square average distances of two opposite

monomers of a ring in the swollen and the preparation state,
P and P0 are the overlap numbers in the swollen state and the
preparation state.

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9

N 128 256 256 512 512 512 1024 1024 1024
M 1024 512 2048 2048 1024 512 1024 512 1024
ϕ0 0.5 0.5 0.25 0.5 0.25 0.125 0.5 0.25 0.0625
fn 2.7 5.64 2.89 10.9 6.04 2.98 17.7 10.08 2.76
Q 14.9 10.5 25.7 9.54 17.0 38.3 8.6 14.5 39.8
D2

0 339 632 857 1340 1710 2113 2505 3163 4884
D2 1027 2382 2281 5236 5452 5216 10708 11579 10621
P0 9.03 13.1 9.59 18.8 12.9 8.19 27.5 19.1 9.37
P 3.64 8.37 3.61 17.0 9.49 3.85 26.3 16.5 4.62
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One possible mechanism for the observed nonaffine
swelling is the rearrangement of cyclic polymers upon
swelling without elastic deformation. To identify such
rearrangements, we distinguish between concatenated and
nonconcatenated rings which are overlapping at preparation
conditions. The distance distributions of centers of mass
of these ring populations is then analyzed at swelling
equilibrium. The data of the two overlapping populations
of sample 6, see Table I, with small fn is shown in Fig. 4 as
an example. The data show that nonconcatenated rings
essentially are squeezed out of the volume 4πD3=3while the
concatenated rings remain within a distance of order D.
As a consequence, the overlap number, P, at swelling

equilibrium is roughly proportional to fn for all samples of
our Letter, as shown in Fig. 5. Note that fn grows linearly
with N and, thus, more rapidly than the Flory number P
of overlapping molecules. As mentioned in Ref. [9], fn
must converge towards P0 for large N. Convergence is
nearly reached for the samples with the largest values of fn.
To show this convergence, we added the data for P0 ∝
fnϕ0.27

0 ∝ ϕ0.65
0 N1=2 in Fig. 5 ignoring the weak extra ϕ0

dependence of P0.
Based upon the above observations, we argue that the

dominating contribution to the nonaffine swelling stems
from the desinterspersion of nonconcatenated rings upon
swelling in the partially concatenated regime with fn ∝ N.
To derive the equilibrium swelling condition in this
regime, we assume full desinterspersion of overlapping
nonconcatenated rings and an affine deformation of the
concatenated rings. For the sake of argument, let us
introduce an intermediate state of swelling that we call
the “desinterspersed state” and denote this state by subscript
‘des’. In the desinterspersed state, the total number of
correlation volumes per volume of a ring, R3

des=ξ
3
des, can

be approximated by the number of blobs per chain, N=gdes
times the number fn ∝ ϕν=ð3ν−1Þ

0 N of overlapping concat-
enated chains

R3
des

ξ3des
≈

N
gdes

fn: ð7Þ

We consider the polymer volume fraction at the desinter-
spersed state

ϕdes ≈
b3gdes
ξ3des

∝
b3N2

R3
des

ϕν=ð3ν−1Þ
0 ; ð8Þ

as a reference state for the onset of the affine deformation.
The size of a nondeformed ring

Rdes ≈ bN1=2ϕ−ðν−1=2Þ=ð3ν−1Þ
des ; ð9Þ

at polymer volume fractionϕdes leads to a degree of swelling
in the desinterspersed state
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FIG. 3 (color online). The fraction of the apparent affine
contribution Q̄a to the equilibrium degree of swelling Q.
The lines indicate best fits with power laws ∝ Q−1.9�0.2 and
∝ Q−1.95�0.08 for ϕ0 ¼ 1=4 and ϕ0 ¼ 1=2, respectively.
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FIG. 4 (color online). Normalized distance distribution between
centers of mass of previously overlapping nonconcatenated and
concatenated rings at swelling equilibrium (sample 6).
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FIG. 5 (color online). The overlap number of cyclic polymers in
the preparation state, P0 (filled symbols), at swelling equilibrium,
P (hollow symbols), as a function of the average number of
concatenations per ring, fn. The dashed line indicates P ∝ fn and
the solid line indicates P0 ∝ f1=2n .
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Qdes ¼ 1=ϕdes ∼ N−ð3ν−1Þϕ−2ν
0 ∼ N−0.76ϕ−1.18

0 : ð10Þ

This result is the key to understanding the negative power for
N at the equilibrium degree of swelling.
For fn > 1, desinterspersion must stop at a polymer

volume fraction larger than the overlap concentration
ϕ� ∝ N−ð3ν−1Þ proposed by de Gennes [2]. In fact, we find
ϕdes ∝ 1=ϕ�, which shows that desinterspersion becomes
increasingly difficult with increasing overlap of the rings.
Since ϕdes ≫ ϕ�, swelling equilibrium is reached by an
additional elastic deformation of the rings. We consider
only the permanent entanglements as approximated by the
number of concatenations to be relevant at swelling
equilibrium and assume that higher topological invariants
are not important for the partially concatenated regime with
fn ∝ N. To apply the affine model for deformation, we
subdivide the N segments of the ring into fn elastic chains
by assuming that, for small fn ≲ 10, all concatenated
chains are deforming the concatenating ring at swelling
equilibrium. Swelling equilibrium is found by using ϕdes
as a new “preparation condition,” instead of ϕ0 in Eq. (1).
This leads to

Q ≈
�

N
fnðϕ0Þ

�
3ð3ν−1Þ=4

ϕ−1=4
des ≈ N−ð3ν−1Þ=4ϕ−5ν=4

0 ; ð11Þ

and thus, Q ≈ N−0.19ϕ−0.74
0 , which is in good agreement

with our ad hoc scaling prediction in Eq. (4) for the
simulation data.
As a direct consequence of this model, we find that the

apparent affine fraction of swelling depends on the desin-
terspersed state

Q̄a ¼
�
Rg

Rg;0

�
3

¼
�
Rdes

Rg;0

�
3
�

Rg

Rdes

�
3

¼
�
Rdes

Rg;0

�
3

Qa: ð12Þ

Since the true affine fraction Qa=Q ¼ 1=Qdes is related
to the equilibrium degree of swelling by QaðQÞ=Q ∝
Q−1

desðQÞ ∝ Q−4, see Eq. (11), the apparent affine fraction
of swelling is also universal, i.e., is independent of the length
of the rings

Q̄a

Q
¼

�
Rdes

Rg;0

�
3Qa

Q
∝ ϕ3ðν−1=2Þ=ð3ν−1Þ

0 Q−2=ð3ν−1Þ; ð13Þ

with a strong dependence, Q̄a=Q ∝ Q−2.62, onQ . A similar
universality is observed in Fig. 3, which is a striking evidence
for the existence of the desinterspersion process.
To conclude, Olympic gels display a highly nonaffine

swelling behavior due to desinterspersion processes, if the
linking number fn is smaller than the Flory number P. The
latter condition characterizes the partially concatenated
regime, for which a pairwise analysis of linked states
seems to be sufficient [9]. The good qualitative agreement
between simulation data and model further indicates that

each concatenation may contribute a pair of elastic strands
to the network, which might be a reasonable approximation
for the partially concatenated regime.
It is important to point out, that the structure of any

network can be decomposed into a set of connected cycles
[11], whereby the average cycle size is of order 8 chains
for typical strand lengths around 50–100 Kuhn segments
between four functional junctions [12]. Therefore, most
elastomers are located in the regime fn ∝ N where desin-
terspersion of nonconcatenated cyclic structures upon
swelling occurs. Based upon our results, therefore, we
expect a clear impact of desinterspersion onto the equilib-
rium swelling degree of polymer gels. This view is
supported by simulations that detect a nonaffine swelling
of cross-linked networks on length scales much larger than
the size of individual network strands [13] and by experi-
ments that measure a vanishing nonaffine contribution
to elasticity at large degrees of swelling [14]. Scattering
and NMR data indicate that the initial swelling may be
dominated by a desinterspersion process that is followed by
a deformation of the chains [4], which is in full accord with
our model but in opposite order of the assumption used
by Painter and Shenoy [15]. In particular, the length scale
at which the deformation becomes affine is an essential
parameter that needs to be understood in the framework
of elasticity models that predict a nonaffine deformation
behavior [10]. Our analysis of Olympic gels gives a fresh
view of the problem of the swelling of polymer gels in
general and reveals that connectivity caused by topological
concatenation can lead to a qualitatively different swelling
behavior.
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