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We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in
two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside
bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and
the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the
Si:P and Ge:P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport
measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a
microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest
the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow
half-filled impurity bands.
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Invariance to time reversal is among themost fundamental
and robust symmetries of nonmagnetic quantum systems.
Its violation often leads to new and exotic phenomena,
particularly in two dimensions (2D), such as the quantized
Hall conductance in semiconductor heterostructures [1], the
quantum anomalous Hall effect in topological insulators [2],
or the predicted chiral superconductivity in graphene [3,4].
The breaking of time-reversal invariance is experimentally
achieved either by an external magnetic field or intentional
magnetic doping. Here we show that strong Coulomb
interactions can also lift the time-reversal symmetry in
nonmagnetic 2D systems at zero magnetic field.
While bulk P-doped Si and Ge have been extensively

studied in the context of electron localization in three
dimensions [5–10], confining the dopants to one or few
atomic planes (delta layers) of the host semiconductor has
recently led to a new class of 2D electron system [11–14].
Electron transport in these atomically confined 2D layers
occurs within a 2D impurity band where the effective
Coulomb interaction is parameterized in terms ofU=γ, with
U being the Coulomb energy required to add an additional
electron to a dopant site, and γ, the hopping integral between
adjacent dopants. Since each dopant P atom contributes
one valence electron, the impurity band is intrinsically
“half filled” [schematic in Fig. 1(a)], which reinforces the
interaction effects due to the in-built electron-hole sym-
metry, and forms an ideal platform to explore the rich
phenomenology of the 2D Mott-Hubbard model, ranging
from Mott metal-insulator transition (MIT) to novel spin
excitations and magnetic ordering [15–18].
In this Letter we show evidence of spontaneously broken

time-reversal symmetry in 2D Si:P and Ge:P delta layers as
the on-site effective Coulomb interaction is increased by

decreasing the doping density of P atoms. Quantum trans-
port and noise experiments indicate a strong suppression
of quantum interference effects at low doping densities.
We could attribute this to a spontaneous breaking of time-
reversal symmetry which manifests in an unambiguous
suppression of universal conductance fluctuations (UCFs)
at zero magnetic field.
The preparation of the P delta layers in Si and Ge have

been detailed in earlier publications [11,12,19], and param-
eters relevant to the present work is supplied in the
Supplemental Material [20]. The Drude conductivity (σD)
of the delta layers decreases with decreasing doping as
σD ∝ n3=2 [Fig. 1(b)], where n is the electron density
measured from the Hall effect, implying significant scattering
from charged dopants [21].We find σD ≫ e2=h in all devices,
ensuring a nominally weakly localized regime. All electrical
transport measurements were carried out in a dilution refrig-
erator with an electron temperature of 0.15 K using the low
frequency ac lock-in technique. The electron transport at all
temperatures T was strictly diffusive with kBTτ0=ℏ ≪ 10−2,
because of short momentum relaxation times τ0 ∼ 10–100 fs,
and displays negative logarithmic correction to conductivity in
the quantum coherent regime (Fig. 1c) [12].
The key advantage of using both Si and Ge as host

semiconductors is the factor of 3 difference in the Bohr
radius, a�B, which allows us to achieve a wide range of
average effective dopant separation (rP=a�B) within the
similar range of doping density (rP ≈ 2=

ffiffiffiffiffiffi
πn

p
). As shown in

the scale bar of Fig. 1(b), rP=a�B has an overall range from
≈0.6 to 3. This corresponds to a rangeof γ ∼ 10–20 meVand
∼20–50 meV for the Ge:P and Si:P devices, respectively,
assuming hydrogenic orbitals [22]. Since U∼200meV
and∼50 meV for a single P donor in Si andGe, respectively,
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the effective on-cite Coulomb interaction U=γ can be ≫ 1,
particularly in lightly doped Si devices.
In Fig. 1(d), we show the transverse magnetic field

(B⊥) dependence of the quantum correction to conductivity,
σQIðB⊥Þ¼σðB⊥Þ−σð0Þ−σcl, where σcl¼−ðσ3D=n2e2ÞB2⊥,
is the classical correction to theDrude conductivity. Because
of the diffusive nature of our devices the quantum correction
from the electron-electron interaction is only perturbative
[∼ðωcτ0Þ2 ≲ 10−4, where ωc is the cyclotron frequency]
[23] and σQIðB⊥Þ represents the contribution primarily from
the quantum interference (QI) effect. σQI for three 2D Si:P
delta layers at 0.28 K is shown in Fig. 1(d). For comparison,
σQI is scaled by σWL, where σWL ¼ ðe2=πhÞ ln ðτϕ=τ0Þ is the
universal weak localization (WL) correction to conductivity
for a diffusive 2D conductor with free electrons. For each
device, both σWL and the phase breaking field Bϕ¼
ℏ=4eDτϕ [shown by vertical lines in Fig. 1(d)] were
experimentally estimated from the low-B⊥ magnetoconduc-
tivity data (see the Supplemental Material [20], Sec. S3),
where τϕ and D are the phase coherence time and electron

diffusivity, respectively. Since the magnitude of σQI at
B ≫ Bϕ represents the net correction to conductivity
due to quantum interference, it is evident from Fig. 1(d)
that the contribution of theWL effect on transport decreases
with decreasing doping density (see the Supplemental
Material [20], Sec. S1). It is important to note that a major
shift in the dominant dephasing mechanism in the lightly
doped samples is ruled out becausewe find τϕ to be similar in
magnitude in all three devices, and ∝ T down to T ¼ 0.2 K
(Fig. S2 in the Supplemental Material [20]). This confirms
the predominance of the electron-electron scattering medi-
ated dephasing which was reported earlier in such delta
layers [12].
The reduced quantum correction cannot be due to the

finite experimental range (≈0–14 T) of B⊥, which exceeds
both Bϕ and B0 (¼ ℏ=4eDτ0, the upper cutoff field due to
momentum relaxation) by factors of 1000 and 2, respec-
tively, even for the least doped devices at 0.28 K (Table I in
the Supplemental Material [20]). The spin-orbit interaction
is known to be small for P-doped (bulk) Si and Ge [24,25],
and independent of the density of the dopants. Any long
range magnetic order is also unlikely because the Hall
resistance was found to vary linearly with B⊥ at all T (see
Supplemental Material [20], Sec. S7) in all our devices
[18]. Alternatively, the WL correction can be reduced due
to scattering of electrons from local magnetic moments.
These moments serve to remove the time-reversal sym-
metry, suppressing the coherent backscattering of electrons.
The local magnetic moments are known to occur in three-
dimensional P-doped Si in the presence of strong Coulomb
interactions close to the MIT [8–10]. In 2D, the possibility
of localized spin excitations at the Mott transition has been
suggested theoretically [17,26], but without any experi-
mental evidence so far. A suppression of quantum correc-
tion to conductivity has been reported in low density
electron gases in Si MOSFETs near the apparent MIT
[27], but it remains unclear whether it arises due to
temperature dependant screening of disorder or interaction
driven spin fluctuations.
To probe whether the observed suppression of locali-

zation correction indeed manifests a breaking of the
time-reversal symmetry, we have measured the UCFs as
a function of T and B⊥ from slow time-dependent fluctua-
tions in the conductance (G) of the delta layers which
represents the ensemble fluctuations via the ergodic
hypothesis [24,28–32]. The time-dependant conductance
fluctuations [inset of Fig. 2(a)] are analyzed to obtain the
power spectral density, SG, which on integration over the
experimental bandwidth gives the normalized variance,
NG ¼ R

SG=G2df ¼ hδG2i=hGi2 as shown in Fig. 2(a)
(see Ref [33] and Supplemental Material [20], Sec. S3
for details). Figure 2(b) shows NG as a function of T for
Si-HD. For T ≲ 15 K, NG increases with decreasing T,
which is a hallmark of UCFs. In this regime, one expects
NG ∝ L4

ϕnT ∝ 1=T, where Lϕð∝ T−0.5Þ and nTð∝ TÞ are

FIG. 1 (color online). (a) Schematic showing the 2D device
architecture, incorporation of P atoms in Si/Ge tetrahedra (a�B is
the effective density-of-states of Bohr radius and rP is the dopant
separation) and the band diagram. The Fermi energy, EF, lies near
the center of the impurity band whose width is determined by the
hopping integral, γ. The band diagram is not drawn to scale, with
the width enlarged for visual clarity. The device dimensions are
given in the Table I of the Supplemental Material [20]. (b) The
Drude conductivity σD, as a function of n for SiP and GeP
devices. The range of the effective dopant separation, rP=a�B, and
the device nomenclature are shown in the shaded panel on the
right, where HD, MD, and LD correspond to high density,
medium density, and low density respectively. The corresponding
densities are 2.5,1.1, and 0.5 × 1014 cm−2, respectively, for Si
and 1.35,0.46, and 0.32 × 1014 cm−2, respectively, for Ge.
(c) The temperature dependence of conductivity, σ (scaled by
the Drude conductivity, σD) for heavily and lightly doped delta
layers in Si and Ge. (d) The quantum correction to conductivity,
σQI (obtained from measured magnetoconductivity after elimi-
nating the classical contribution) as a function of perpendicular
magnetic field, B⊥, at 0.28 K for Si-HD, Si-MD and Si-LD. The
phase breaking field, Bϕ, is shown by vertical lines. The solid
black lines are fits using Eq. (1) in the main text.
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the phase coherence length and density of active two-level
fluctuators [30] [Fig. 2(b)]. The absolute magnitude of NG
in all of the devices corresponds to the change in conduct-
ance by ∼O½e2=h� due to a single fluctuator within a phase
coherent box (see the Supplemental Material [20], Sec. S5),
establishing the observed noise to be indeed from meso-
scopic fluctuations.
As a function of B⊥, the magnitude of the UCFs is

expected to decrease by an exact factor of 2 at two field
scales, first at B⊥ ∼ Bϕ when the time-reversal symmetry,
and hence the Cooperon (self-intersecting diffusion trajec-
tories) contribution, is removed [29,34,35], and second at
B⊥ ∼ BZ ¼ kBT=gμB due to removal of spin degeneracy
[29,35,36], where g and μB are the g factor and Bohr
magneton, respectively. The inset of Fig. 2(d) shows
schematically the two reductions in UCF magnitude as a
function of B⊥. Figure 2(d) shows that the UCF magnitude
in heavily doped Ge-HD (violet symbols) consists of both
factors of two reduction at B⊥ ≈ Bϕ and B⊥ ≈ BZ, corre-
sponding to the removal of time-reversal symmetry and
spin degeneracy, respectively, whereas the lightly doped
devices, such as Si-MD, shows almost no variation in the
UCF magnitude on the scale of Bϕ but decreases by a factor

of 2 at B⊥ ≈ BZ. To confirm this scenario, we have also
recorded the variation of NG in Si-MD as a function of
parallel magnetic field, B∥, which couples only to the spin
degree of freedom (Fig. 2c). The factor of 2 reduction
at B∥ ∼ BZ [shown by vertical arrows in Fig. 2(c)] for
T ¼ 0.5 K and 4.2 K establishes that the 1=f noise in our
devices indeed arises from the UCF mechanism.
Since the reduction in UCF at B⊥ ∼ Bϕ is associated only

to removal of the fundamental time-reversal symmetry of
the underlying Hamiltonian [34], its absence in the lightly
doped delta layers is unique, and has not been previously
observed in interacting 2D systems in semiconductors
[37–39]. To elaborate, we have compiled the B⊥ depend-
ence of NG normalized by NGϕ, where NGϕ is the value of
NG at B⊥ ≫ Bϕ but < BZ , for all devices in Fig. 3. NGϕ

was chosen at B⊥ ∼ 20Bϕ which was < BZ for all the
devices at all temperatures. The peak in NG around B⊥ ¼ 0

is progressively suppressed with decreasing doping density,
and eventually for rP=a�B ≳ 1.5, the Cooperon contribu-
tion to the UCF noise at low B⊥ becomes immeasurably
small, implying a spontaneous breaking of time-reversal
symmetry even at B⊥ ¼ 0 (Inset of Fig. 3).
To explore the origin of lifting of the time-reversal

symmetry in the delta layers, we subjected the devices to an
in-plane magnetic field, B∥, that resulted in a nonmono-
tonic magnetoconductivity in the lightly doped delta layers.
The logarithmic increase in the magnetoconductivity at
large B∥, as shown in Fig. 4(a), was observed in all devices
irrespective of doping level, and known to represent
suppression of WL due to the finite width of the delta
layers [40]. However, the negative magnetoconductivity
around B∥ ¼ 0 often indicates the presence of local
moments, because localization strengthens as phase

FIG. 2 (color online). (a) Typical power spectral density of
conductance fluctuations, SG. The shaded region represents the
normalized variance given by NG ¼ R

SG=G2df ¼ hδG2i=hG2i.
Inset shows the normalized conductance fluctuations (δG=G)
in real time. (b) NG as a function of temperature T for Si-HD.
The solid line shows that noise ∼1=T in the low T regime.
(c) NGðBÞ=NGðB ¼ 0Þ for Si-MD as a function of parallel
magnetic field, B∥, at 4.2 K and 0.5 K. The vertical arrows
denote BZ. (d) NGðB⊥Þ=NGϕ for Ge-HD and Si-MD as a function
of the perpendicular magnetic field, B⊥, at 4.2 K where
NGϕ ¼ NGðB⊥ ∼ 20BϕÞ. Inset is the schematic showing the
reduction in the UCF magnitude by factors of 2 at two character-
istic field scales, Bϕ and BZ (shown by vertical arrows). Bϕ and
BZ are the phase breaking field obtained from low field magneto-
conductivity fits and the Zeeman field, respectively.

FIG. 3 (color online). (a) NGðB⊥Þ=NGϕ as a function of
B⊥ (scaled by the phase breaking field, Bϕ) for all devices at
4.2 K, where NGϕ ¼ NG(B⊥ ∼ 20Bϕ). The inset shows
NGðB⊥ ¼ 0Þ=NGϕ as a function of rP=a�B.
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coherence increases with the freezing of spin-flip scattering
[40,41]. In such a case, the activated spin-flip processes
across the Zeeman gap, leads to magnetoconductivity
decreasing linearly with B∥ as ΔσðB∥Þ ¼ −ηB∥=T, where
η ∼ e2gimpμB=hkB, and gimp is the g factor of the magnetic
impurity [40]. As shown in Fig. 4(c), we indeed find
the ΔσðB∥; TÞ ∝ B∥=T in Si-LD. The negative magneto-
conductivity in B∥ is entirely absent in the heavily doped
devices [Fig. 4(b)]. This establishes that the spin fluctu-
ations are entirely due to strong Coulomb interactions, and
hence observable only in the lightly doped delta layers.
Importantly, the experimental value of η was found to be
a factor of ∼50 smaller than that expected theoretically
(assuming gimp ¼ 2), suggesting that the impact of local
moments on the dephasing process is anomalously small.
The compelling analogy with the bulk P-doped Si close

to MIT provides a “two-fluid” framework to address trans-
port in our delta layers. This consists of itinerant electrons
in disordered Hamiltonian and local magnetic moments
[8–10]. The interaction between the local moments and
itinerant electrons suppresses localization, although the
spin-scattering process is quasielastic (energy exchange
≪ kBT), causing only minor modification to the dephasing
mechanism [as confirmed by the linear T dependence
of τ−1ϕ in Fig. S2 of the Supplemental Material [20] and
small ΔσðB∥Þ]. In addition, the two-fluid model allows
a phenomenological generalized Hikami-Larkin-Nagaoka
expression for the total quantum interference correction that
includes the quasielastic spin scattering rate (τ−1s ) as

ΔσðB⊥;TÞ¼
αe2

πh

�
F

�
B⊥
Bϕ

�
−F

�
B⊥
B0

��
−
βe2

πh
F

�
B⊥
Bs

�
; ð1Þ

where α and β are positive constants close to unity, and
FðxÞ¼ lnðxÞþψð0.5þ1=xÞ, with ψðxÞ being the digamma
function. As shown by the solid lines in Fig. 1(d), Eq. (1)
describes the magnetoconductivity very well over the entire
range of B⊥. The fit parameter Bs ¼ ℏ=4eDτs, provides
an estimate of the spin scattering time τs. We note the
following: (i) As is evident in Fig. 4(d), τ−1s is more than
10 times larger than experimentally measured τ−1ϕ (see the
Supplemental Material [20]), confirming that the spin
scattering is mostly elastic. (ii) Second, τ−1s varies non-
monotonically with n. The filled squares represent τ−1s
analyzed from the data of Ref. [19]. At low n, τ−1s ∼ n0.5

irrespective of the host material, disorder, or carrier mobility,
indicating that the number of local spins are only related
with the number of P dopant sites. However, τ−1s drops
abruptly around n ∼ 1.5 × 1014 cm−2, suggesting a quen-
ching of the spins and commencement of free-electron
weakly localized quantum transport. The T dependence of
τ−1s [Fig. 4(e)], in accordance with the two-fluid model,
shows a power law variation as τ−1s ∝ Tp, with p ≈ 0.7.
This sets the exponent for susceptibility and specific heat
divergence in the delta layers to be≈0.3, which is about half
of that observed in the bulk Si:P close to the MIT [8,42].
Finally, to estimate the fraction of P dopants that host a

local moment, we compare the estimated τ−1s in lightly
doped Si-LD (n ¼ 5 × 1013 cm−2) with (1) the total
momentum relaxation rate τ−10 ≈ 1014 s−1 from the exper-
imental Drude conductivity, although this involves scatter-
ing from neutral defects as well, and (2) calculated
momentum relaxation rate (≈2 × 1013 s−1) expected purely
from the P dopants (charged impurities) (see calculation
details in Ref [21] and the Supplemental Material [20],
Sec. S6). This gives a bound between 2%–10% of the P
dopants to host local moments, which is consistent with
the fraction expected for half-filled impurity bands in bulk
Si:P [10]. Importantly, while the WL correction is reduced
only partially (30% in Si-LD), the UCF noise due to the
Cooperons is completely suppressed for the weakly doped
devices. It is possible that because the UCF noise involves
interference between two Feynman propagators, it is more
likely to be affected by the localized spins than the WL
correction which is determined by a single self-intersecting
propagator. Note that we have not discussed spatial
inhomogeneity or clustering in the distribution of dopants
which can lead to coexistence of localized and delocalized
phases [15], impact of multiple valleys [43,44], or the
intersite Coulomb interaction [37,38,45] which are unlikely
to affect the time-reversal symmetry.
In summary, magnetoconductivity and noise measure-

ments reveal an unexpected spontaneous breaking of
time-reversal symmetry in 2D electron systems hosted in
atomically confined Si:P and Ge:P crystals. The universal

FIG. 4 (color online). (a) The magnetoconductivity, Δσ in the
presence of the magnetic field, B∥, applied parallel to the plane
of the delta layer for Si-LD at 0.2 K and 0.75 K. (b) Δσ in B∥ for
Si-HD at 0.2 K. (c) Δσ as a function of B∥ for Si-LD at 0.2 K and
0.75 K in log-log scale. The solid lines show that Δσ ∝ B∥ in the
region of negative magnetoconductivity. (d) The spin scattering
rate, τ−1s , as a function of carrier density, n, for all devices at
0.28 K. The solid line shows that τ−1s ∝ n0.5. (e) τ−1s as a function
of T for Si-LD and Ge-MD. The solid lines show that τ−1s ∝ T0.7

for both the devices.
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conductance fluctuations and in-plane magnetoconductiv-
ity suggest that local spin fluctuations in the presence of
strong Coulomb interaction play an important role in the
lifting the time-reversal symmetry. Whether this indeed
leads to a true interaction-induced metallic ground state in
two dimensions needs further experimental and theoretical
exploration.
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