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Superfluidity is a fascinating phenomenon that, at the macroscopic scale, leads to dissipationless flow
and the emergence of vortices. While these macroscopic manifestations of superfluidity are well described
by theories that have their origin in Landau’s two-fluid model, our microscopic understanding of
superfluidity is far from complete. Using analytical and numerical ab initio approaches, this Letter
determines the superfluid fraction and local superfluid density of small harmonically trapped two-
component Fermi gases as a function of the interaction strength and temperature. At low temperature, we
find that the superfluid fraction is, in certain regions of the parameter space, negative. This counterintuitive
finding is traced back to the symmetry of the system’s ground state wave function, which gives rise
to a diverging quantum moment of inertia Iq. Analogous abnormal behavior of Iq has been observed in
even-odd nuclei at low temperature. Our predictions can be tested in modern cold atom experiments.
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Superfluidity plays a crucial role in various areas of
physics. The core of neutron stars is thought to be super-
fluid, giving rise to modifications of the specific heat and
rapid cooling [1,2]. In laboratory settings, superfluidity of
bosonic liquid helium-4 below 2.17 K and fermionic liquid
helium-3 below 3 mK is associated with dissipationless
flow and the formation of vortices [3]. More recently,
superfluidity has been demonstrated in dilute atomic Bose
and Fermi gas experiments [4–7]. The superfluid fraction
shows a strong dependence on the dimensionality and the
size of the system. In particular, transitions that are sharp
in homogeneous systems are smeared out in finite-sized
systems [8–10].
Over the past 20 years or so, nonclassical rotations in

small doped bosonic helium-4 and molecular parahydrogen
clusters have been interpreted within the framework of
microscopic superfluidity [11–16]. This framework has
been applied to systems consisting of as few as one, two,
or three particles [17,18]. The framework of microscopic
superfluidity dates back to the 1950s when nuclear
physicists introduced a moment of inertia based method
for the study of superfluidity in finite-sized nuclei [19–21].
In nuclei, superfluidity is tied to the pairing of nucleons
[8,22,23]. As a consequence of pairing, the quantum
moment of inertia of even-even nuclei, i.e., nuclei with an
even number of protons and an even number of neutrons,
tends to go to zero in the zero temperature limit while that of
even-odd nuclei tends to increase sharply as the temperature
approaches zero [8,23,24].
We investigate the superfluid fraction and local super-

fluid density of small harmonically trapped dilute atomic
Fermi gases over a wide range of interaction strengths. In
the low temperature region, we identify parameter combi-
nations where the quantummoment of inertia is abnormally
large, i.e., larger than the classical moment of inertia,

implying a negative superfluid fraction. The negative super-
fluid fraction is linked to the topology of the density matrix.
Specifically, the superfluid fraction takes on negative values
in the low temperature regimewhen one of the energetically
low-lying eigenstates supports a Pauli vortex with finite
circulation [25–27] at the center of the trap. Intuitively, this
can be understood as follows: In the absence of a low-energy
eigenstatewith finite circulation, the superfluid few-fermion
gas “does not respond” to an infinitesimal rotation. This
situation closely resembles that for a superfluid few-boson
gas. In the presence of a low-energy eigenstate with finite
circulation, however, the superfluid few-fermion gas
“responds strongly” to an infinitesimal rotation; i.e., the
infinitesimal rotation leads to a dynamical instability. A
related instability also exists for bosonic few-atom systems.
However, since the instability for bosons does not occur
for an infinitesimal rotation but when the rotating frequency
is comparable to the angular trapping frequency [28], the
superfluid fraction, which is defined in the limit of infini-
tesimal rotation [29–32], is not affected by the instability.
We note that a negative superfluid fraction has also been
predicted to exist for the Fulde-Ferrell-Larkin-Ovchinnikov
state of fermions loaded into an optical lattice [33]. The
negative superfluid fraction discussed in this Letter is related
to the occurrence of paramagnetism of polarized one-
dimensional electrons on a ring with an even number of
particles [34].
We consider N atoms of mass m described by the

Hamiltonian H in a spherically symmetric harmonic trap.
The system Hamiltonian under a small rotation about the z
axis can, in the rotating frame, be expressed as Hrot ¼
H −ΩLz [3], where Ω denotes the angular rotating freq-
uency and Lz the z component of the angular momentum
operator L. The superfluid fraction ns is defined as ns ¼
1 − Iq=Ic [29–32], where the quantummoment of inertia Iq
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is defined in terms of the response to an infinitesimal
rotation,

Iq ¼
∂hLzith
∂Ω

����
Ω¼0

; ð1Þ

and h·ith indicates the thermal average. The classical
moment of inertia Ic is defined through Ic ¼
hmP

nr
2
n;⊥ith, where rn;⊥ is the distance of the nth particle

to the rotating axis [35].
We work in the canonical ensemble and determine the

superfluid fraction of small trapped systems as a function of
the temperature T using two different approaches. (i)We use
the path integral Monte Carlo (PIMC) approach to sample
the density matrix at temperature T [36–38]. The superfluid
fraction ns and local superfluid density ρs are then obtained
using the area estimator [32,39,40]. (ii) We employ a
microscopic approach [38]: For the systems considered,
L2 and Lz commute with the Hamiltonian H, implying
that the total orbital angular momentum quantum number L
and corresponding projection quantum number M are
good quantum numbers. One finds Iq ¼ ℏ2hM2ith=ðkBTÞ,
where the thermal average runs over the system at
rest [41]. To evaluate Iq, we calculate a large portion of
the quantum mechanical energy spectrum and thermally
average the quantity M2. From the same set of calculations
we determine r2n;⊥ (and correspondingly Ic) via the gener-
alized virial theorem [42–44], which applies to systems
with short-range interactions with s-wave scattering length
as under spherically symmetric harmonic confinement
with angular trapping frequency ω, 3ω2

P
nhmr2n;⊥ith ¼

2hEþ asð∂E=∂asÞ=2ith. Here, E denotes the total energy.
We first consider N identical noninteracting harm-

onically trapped bosons or fermions described by the
Hamiltonian H ¼ Hni,

Hni ¼
XN

j¼1

�
−ℏ2

2m
∇2

j þ
1

2
mω2r2j

�
; ð2Þ

where rj denotes the position vector of the jth atom. Using
the N-body partition function, we calculate the thermal
averages for Ic and Iq [45]. Figure 1(b) shows ns for
N ¼ 1–10 noninteracting bosons. For all N, ns goes to 1 as
the temperature approaches zero. This is a direct conse-
quence of the fact that the ground state has L ¼ 0. As the
particle number increases, the superfluid region broadens.
Figure 1(a) shows ns for N ¼ 1–10 noninteracting fer-
mions. The curves have similar asymptotic behavior at
high temperature, yet differ dramatically at low temper-
ature. The N ¼ 1; 4, and 10 curves increase monotonically
with decreasing temperature and approach one at T ¼ 0.
Because of the closed shell nature, the ground state of these
Fermi systems is, as that of the Bose systems, nondegen-
erate and has vanishing angular momentum. The curves for

the other N values dive down to negative infinity at zero
temperature. The ground state of these open-shell systems
is degenerate and contains finite angular momentum states.
Figure 1(c) compares the analytical results (lines) for
N ¼ 2 and 3 with those obtained by the PIMC approach
(symbols). The excellent agreement confirms the correct-
ness of our analytical results and demonstrates that our
PIMC simulations yield highly accurate results. Given that
BCS theory predicts a vanishing superfluid fraction for the
homogeneous Fermi gas in the absence of an effective
attraction, one might wonder where the nonvanishing ns
values for the noninteracting trapped Fermi gas come from.
Our analysis shows that the nonvanishing ns is due to the
trap energy scale Eho, where Eho ¼ ℏω. An analogous
energy scale does not exist in the noninteracting homo-
geneous system, for which the moment of inertia based
method predicts, in agreement with BCS theory, that ns
vanishes. Last, we note that although Stringari [48]
determined ns for trapped noninteracting single-component
Fermi gases, no negative superfluid fraction was
observed because the semiclassical treatment employed
assumed kBT ≫ Eho.

0

0.2

0.4

0.6

0.8

1

n s

0 0.5 1 1.5 2
k

B
T / E

ho

-0.4

0

0.4

0.8

n s

0 1 2
k

B
T / E

ho

0

0.5

1

n s

0 2 4
r / a

ho

-1

0

1

ρ s r
2  a

ho

(a)

(c)

(b)

(d)

FIG. 1 (color online). Superfluid properties of the noninteract-
ing trapped single-component gas as a function of kBT=Eho.
(a) From top to bottom at kBT ¼ Eho, the alternating solid and
dashed lines show ns for the Fermi gas with N ¼ 1–10. (b) From
bottom to top, alternating solid and dashed lines show ns for the
Bose gas with N ¼ 1–10. (c) The dashed and solid lines replot ns
for N ¼ 2 and 3, respectively. For comparison, symbols show ns
obtained using the PIMC approach. The error bars are smaller
than the symbol size. (d) The dashed and solid lines show the
scaled radial total and superfluid density for N ¼ 2.
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To get a sense of the spatial distribution of the superfluid
fraction, we calculate the radial superfluid density ρsðrÞ.
Our analysis is based on the definitions of Refs. [40,49]; we
note that alternative definitions exist [50–52]. As an
example, the solid line in Fig. 1(d) shows the scaled radial
superfluid density ρsðrÞr2 for the two-fermion system at
T ¼ 0.265Eho=kB. For comparison, the dashed line shows
the scaled radial total density at the same temperature. For
this temperature, we have ns ¼ 0 [53]. The radial super-
fluid density is negative for small r and positive for large r.
In the absence of rotation, the ground state has L ¼ 1 and
the expectation value of Lz averages to zero. The threefold
degenerate state splits under a small rotation, with the
M ¼ 1 state having the lowest energy; correspondingly, the
expectation value of Lz is ℏ. Using these results to express
Iq, see Eq. (1), as a finite difference, we find that Iq scales
as limΩ→0ℏΩ−1 at T ¼ 0. This shows that the divergence of
Iq (and, hence, the negative value of ns) is due to theM ¼ 1
state, which contains a vortex at the center of the trap with
circulation 1. Figure 1(d) shows that this is where the radial
superfluid density is negative; i.e., the admixture of the
vortex state triggers the dynamical instability.
Next, we consider two-component Fermi gases consist-

ing of N1 spin-up and N − N1 spin-down particles with
short-range interspecies interactions. As the s-wave scat-
tering length is tuned from small negative values to infinity
to small positive values, the system changes from forming
Cooper pairs to composite bosonic molecules [54]. In what
follows we investigate how the change from “fermionic”
(Cooper pairs) to “bosonic” (composite molecules) is
reflected in the superfluid properties of the trapped system.
We consider the Hamiltonian H ¼ Hint,

Hint ¼ Hni þ
XN1

j¼1

XN

k¼N1þ1

V tbðrjkÞ; ð3Þ

for two different interspecies two-body potentials V tb, a
regularized zero-range pseudopotential VF [55] and a short-
range Gaussian potential VG with depth U0 (U0 < 0) and
range r0, VGðrjkÞ ¼ U0 exp½−r2jk=ð2r20Þ�. The depth and
range are adjusted so that VG yields the desired as;
throughout, we consider potentials with r0 ≪ aho
[aho ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmωÞp

] that support at most one free-space
s-wave bound state.
For the trapped (2,1) system with zero-range inter-

actions, we determine a large portion of the energy
spectrum by solving the Lippman Schwinger equation
for arbitrary scattering length [56]. This means that ns
can be determined within the microscopic approach over a
wide temperature regime. Figure 2(b) shows the classical
moment of inertia Ic of the (2,1) system as a function of the
temperature for different 1=as (as positive). Ic decreases for
fixed T with increasing 1=as and increases for fixed as with
increasing T. Figure 2(c) shows the quantum moment of

inertia Iq. In the high temperature regime, Iq and Ic are
nearly identical. However, in the low temperature regime,
notable differences exist. For 1=as ¼ 0, Iq diverges to
positive infinity as T → 0. For aho=as ≈ 1, in contrast, Iq is
zero at T ¼ 0, increases sharply for kBT ≲ 0.1Eho, and then
decreases for kBT ≈ 0.1–0.5Eho. As aho=as increases, the
local maximum moves to larger temperatures and even-
tually disappears for aho=as ≈ 2. The dramatic change of Iq
at low T on the positive as side can be traced back to the
symmetry change of the ground state wave function. The
lowest eigenstate of the (2,1) system has L ¼ 1 for
aho=as ≲ 1 and L ¼ 0 for aho=as ≳ 1. Correspondingly,
Iq goes, in the zero T limit, to þ∞ for aho=as ≲ 1 and to 0
for aho=as ≳ 1. The strong variation of Iq near aho=as ≈ 1

in the low T regime reflects the “competing” contributions
of the L ¼ 0 and L ¼ 1 states to the thermal average.
Combining Ic and Iq yields ns [see Fig. 2(a)]. The (2,1)

systems with aho=as ≲ 1 and aho=as ≳ 1 have a superfluid
fraction that goes to negative infinity and one, respectively,
at zero temperature. This can be viewed as a “quantum
phase transitionlike” feature [56,57]. At kBT ¼ 0.2Eho—a
temperature that might be achievable with current exper-
imental setups [58,59]—ns varies between −0.14ð1Þ and
0.54(1) for aho=as ¼ 0 to 2. For a given as, ns varies
notably over a small temperature regime. The fact that ns is
essentially independent of as for kBT ≳ 0.75Eho and
strongly dependent on as for kBT ≲ 0.4Eho might prove
advantageous for qualitatively verifying the predicted
behavior experimentally.
We now investigate a trapped spin-balanced system.

Figure 3(a) shows ns for the (2,2) system with as=aho ¼
0;−0.2;−1, and ∞. The ground state of the noninteracting
(2,2) system is ninefold degenerate (one state has L ¼ 0,
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FIG. 2 (color online). Properties of the interacting trapped (2,1)
system as a function of kBT=Eho. (a) The lines from bottom to top
show ns for aho=as ¼ 0; 0.2;…; 2. (b),(c) The lines from top to
bottom show Ic and Iq, respectively, for aho=as ¼ 0; 0.2;…; 2.
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three states have L ¼ 1, and five states have L ¼ 2). The
degeneracy of the ground state makes Iq [see thick dotted
line in Fig. 3(d)] diverge to plus infinity at T ¼ 0. The
superfluid fraction, in turn, goes to minus infinity as T → 0.
As the interactions are turned on, the degeneracy of the
states with different L is lifted, with the energy of the L ¼ 0
state lying below that of the L ¼ 1 and 2 states. This
implies that Iq goes to zero at T ¼ 0 for as ≠ 0 [for
as=aho ¼ −1, see the thick dashed line in Fig. 3(d)]. The
behavior of the (2,2) system is similar to that of the (2,1)
system in that the zero temperature limit of ns changes from
minus infinity to one as the scattering length is tuned. The
transition, however, occurs at different scattering lengths
[as ¼ 0 for the (2,2) system and aho=as ≈ 1 for the (2,1)
system].
Figure 3(e) shows the radial superfluid density for the

(2,2) system with as ¼ −0.2aho for various temperatures.
For the lowest temperature considered (kBT ¼ 0.5Eho), ns
is equal to 0.230(3). Although ns is positive, the radial

superfluid density is negative in the small r region,
reflecting the admixture of finite L states to the density
matrix. As the temperature increases, the amplitude of the
negative part of the radial superfluid density decreases and
moves to smaller r. When the radial superfluid density is
positive everywhere, it roughly has the same shape as the
total radial density (not shown) but with significantly
decreased amplitude. This shows that the superfluid density
is, in this regime, distributed roughly uniformly throughout
the cloud and not localized primarily near the center or edge
of the cloud. We find similar behavior for other as.
In practice, thermal equilibrium cannot be reached if the

confinement is spherically symmetric. We have checked
that our results hold qualitatively for anisotropic traps
provided that jωx − ωyj ≪ ωx þ ωy. Moreover, the abnor-
mal behavior of ns and Iq is also found for finite rotating
frequencies, provided that ℏΩ ≪ Eho. Instead of probing
the response to a rotation of the trap, it might be possible to
simulate the rotation (and the resulting effective magnetic
field) by applying an effective gauge field [60].
To summarize, we determined the superfluid properties

of small harmonically trapped Fermi gases as functions of
the s-wave scattering length and temperature. At low
temperature, the quantum moment of inertia behaves, in
certain regimes, abnormal; i.e., it is larger than the classical
moment of inertia, yielding a negative superfluid fraction.
The abnormal behavior arises if one or more of the low-
lying eigenstates have a finite circulation, i.e., support a
vortex. The relevant temperature is roughly ≲0.5Eho=kB.
Our predictions are unique to small systems, since such low
temperatures can only be reached in few-fermion systems
[58,59] and not in large Fermi gases.
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