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We demonstrate the experimental realization of a multiresonant metamaterial for Lamb waves, i.e.,
elastic waves propagating in plates. The metamaterial effect comes from the resonances of long aluminum
rods that are attached to an aluminum plate. Using time-dependent measurements, we experimentally prove
that this metamaterial exhibits wide band gaps as well as sub- and suprawavelength modes for both a
periodic and a random arrangement of the resonators. The dispersion curve inside the metamaterial is
predicted through hybridizations between flexural and compressional resonances in the rods and slow and
fast Lamb modes in the plate. We finally underline how the various degrees of freedom of such system
paves the way to the design of metamaterials for the control of Lamb waves in unprecedented ways.
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Man-made composite materials have generated a wealth
of studies in the community of wave physics over the
past 20 years, as they can have properties that cannot be
found in natural materials. It is now well accepted that
the properties of these propagation media stem from two
distinct origins: the ordered or disordered spatial distribu-
tions of their constituents, and the resonant or nonresonant
nature of their unit cell [1,2]. When waves propagate in
composite media with a structural order, they can undergo
multiple scattering, which leads to frequency bands of
permitted and prohibited propagation. These prohibited
propagation bands (defined as band gaps) are analogous to
electronic band gaps in natural crystals [3]. These materials
have a typical spatial scale comparable to the wavelength
at the frequencies of interest. They are termed photonic
crystals in electromagnetics [4–6] and phononic crystals in
acoustics [7–17] and constitute powerful tools to shape the
flow of waves in various ways [6].
On the other hand, composite materials made out of

resonant elements, also called locally resonant media, owe
their macroscopic properties to the dispersive nature of
their unit cell [1,18–25]. They can be organized at a smaller
scale than the wavelength, in which case they belong to the
family of metamaterials [26,27]. Metamaterials can have
bands with high momentum modes that are equivalent to
high effective parameters [20,28–30] or frequency bands
with negative effective properties that manifest as band gaps
[18,19,23,24,31–33]. In the absence of near-field coupling,
the metamaterial properties can be interpreted from Fano
interferences between the propagating and scattered waves;
this leads to hybridization between local resonances and the
incident waves that propagate in the host medium [24,34].
The spatial organization of thematerial is no longer relevant,
and band gaps may be observed whether it is ordered or
disordered [23,35].

The width and efficiency of band gaps in locally resonant
metamaterials depend upon both the spatial density of the
resonators and the quality factor of the resonance. Indeed,
in the limit of small resonators compared to the wavelength,
the smaller the resonator, the higher its quality factor. This
justifies why locally resonant metamaterials classically
support subwavelength modes and band gaps limited to
narrow bandwidths. To overcome this fundamental limita-
tion, a dimension of the physical space can be sacrificed by
creating a uniaxial metamaterial [30,36,37], which consists
of resonators that are small compared to the wavelength in
2D, while this restriction is relaxed in the third dimension
[24]. One example is the so-called wire medium in electro-
magnetism, which has been used to control and/or focus
waves below the diffraction limit [24,30,37]. In acoustics,
a collection of narrow but long pipes was recently used to
realize a super lens [38]. Although limited so far to 3Dmeta-
materials, this approach is perfectly suited to 2D surface
waves in acoustics and electromagnetism.
In this Letter, we demonstrate experimentally how

uniaxial metamaterials present richer characteristics than
any other metamaterials for Lamb waves [39–45]. To do so,
we study a stadium-shaped metallic plate that behaves as an
ergodic cavity for surface waves. A collection of long thin
metallic rods is attached on a square portion of the plate.
These rods are organized in a periodic or a random pattern,
hence, providing an ordered or disordered Lambwavemeta-
material. The propagation of Lambwaves [46,47] inside and
outside these metamaterials is then mapped across a large
frequency spectrum. Interestingly enough, both the periodic
and the random samples show identical wide band gaps
for all of the angles of incidence. The ordered and disord-
ered metamaterials also support sub- and suprawavelength
modes for frequency bands on the edge of the band gaps.
Finally, the dispersion relations of the metamaterials are
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compared to numerical simulations. While the metamaterial
effect usually comes from the hybridization of a single
propagating modewith a single local resonance, we identify
here the hybridizations of the slow (A0) and fast (S0) Lamb
waves with the compressional and flexural resonances of
the metallic rods.
The investigation of the uniaxial metamaterial for Lamb

waves was made through experiments at a larger meso-
scopic scale (and, hence, at a lower frequency) than usually
reported in the literature. A 6-mm-thick and 1.5-m by 2-m-
long aluminum plate was locally excited by a dynamic
shaker with a 1.8-s-long broadband chirp that ranged from
500 Hz to 11 kHz [Fig. 1(a)]. At low frequency, two Lamb
modes propagate in the plate, which are defined as the
antisymmetric A0 and the symmetric S0 modes. The A0

mode mostly corresponds to a vertical displacement of
the plate, while the S0 mode corresponds to a horizontal
displacement. For symmetry reasons, the shaker only
excites the A0 mode [48], and only the vertical displace-
ment of the plate is locally probed with the laser interfer-
ometer. The chaotic shape of the plate (Bunimovich
stadium) ensures that, whatever the source position, the
waves propagate at long time in all directions with equal
probabilities [48–50]. Note that the A0 Lamb waves have a
quadratic dispersion relation [46–48] with typical wave
speed of 340 m=s at 2 kHz (wavelength λ ¼ 17.5 cm). The
multiply reverberated waves are measured on the upper side
of the plate, and after cross correlation with the emitted

chirp, the plate response is spread over more than 200 ms
[Fig. 1(b)], to be compared to the 1-ms-long autocorrelation
signal. This corresponds to more than 20 round trips of the
propagating waves across the plate. Using PC-controlled
motorized mirrors, the vertical displacement of the plate
surface can be scanned on a 0.20 m by 1.15 m surface S
[Fig. 1(a), rectangle numbered 5] with a resolution of
3 mm. This accurate estimation of the waves interference
pattern created by the shaker in the plate is referred to in the
following as the spatiotemporal wave field.
Within this scanned area, a metamaterial is built with

a set of 100 cylindrical 61-cm-long, 6.35-mm-diameter
aluminum rods glued on a 400 cm2 area on the lower side
of the plate [Fig. 1(c)]. Two different configurations were
studied depending upon the random or periodic arrange-
ment of the rods. The average distance between resonators
is of the order of 2 cm (i.e., λ=9 and λ=4 for the A0 mode at
2 and 10 kHz), which corresponds to a 2-cm-wide square
lattice for the periodic sample. A 5-mm minimum inter-rod
distance was used for the random arrangement. For Lamb
waves, this collection of rods is equivalent to a set of sub-
wavelength resonant scatterers exhibiting several resonan-
ces of different nature (longitudinal and flexural resonances
of rods) in the frequency range under study.
When the plate vertical displacement is probed outside

the metamaterial, the spatially averaged Fourier transform
shows a maximum energy density below 2 kHz, followed
by a plateau up to 11 kHz [Fig. 2(a), dashed gray curve]. The
sudden 10-dBdrop at 2 kHz is due to the radiation leakage of
the A0 Lamb mode in air [48]. At 2 kHz, the wave speed of
theA0 Lambwavesmatches the sound velocity (≈340 m=s),
and the plate radiates sound in air. This phenomenon
necessitates an explanation but has no influence on the
physics of themetamaterial. The Fourier spectrummeasured
above the multiresonator ordered and disordered metama-
terials reveals three wide band gaps starting at 2, 6, and
10 kHz. The band gaps are similar in shape and intensity
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FIG. 1 (color online). (a) Experimental setup. A shaker (1)
generates A0 Lamb waves in the aluminum plate. The wave field
is measured with a Doppler velocimeter (2) and a PC-controlled
(3) motorized mirror(4) on the rectangular area (5) on the upper
side of the plate. The metamaterial (6) is attached below the
plate on one side of the recording map. (b) The typical temporal
dispersion exceeds 0.2 s, which corresponds to more than
20 round-trips inside the plate. (c) The metamaterial is made
of 100 vertical aluminium rods that can be arranged on a periodic
or random pattern, with an average inter-rod distance of the
order of 2 cm.
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FIG. 2 (color online). (a) Average Fourier spectra for the signals
measured inside (black line for the periodic sample, gray line for
the random sample) and outside (dashed gray) the metamaterial.
The averaging is performed over two surfaces marked as dotted
squares within the rectangle measurement area (number 5) in
Fig. 1. (b) Strongly reverberated signals are obtained outside the
metamaterial after filtering in the first band gap [dashed vertical
lines in (a)]. Both signals are measured at the center of the
averaging areas described in (a).
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independently of the periodic or random organization of the
rods. This demonstrates that spatial disorder does not affect
the properties of the metamaterial whose behavior cannot
be explained with constructive or destructive interferences
associated with Bragg scattering. Moreover, even at long
reverberation times, the temporal response filtered within
the first band gap [vertical dashed line in Fig. 2(a)] remains
almost null in the metamaterial [Fig. 2(b)]. Since the plate
shape is chaotic and, hence, ergodic, this means that the
band gaps are conserved for all angles of incidence [48].
For the sake of novelty, we present in the following, the

spatiotemporal wave field measured on the surface S with
the random metamaterial only. In Figs. 3(a) and 3(b), the
wave field was filtered in the first band gap [dashed vertical
lines in Fig. 2(a)] and then mapped after a propagation
time of 3 ms (corresponding to the ballistic field) and 41 ms
(for multireverberated Lamb waves). These “snapshots”
reveal the following information. First, the band gap is
efficient, as waves have been clearly attenuated within a
small fraction of the A0 modewavelength. Second, the band
gap is valid for all incident angles, as can be seen from
the second snapshot with a superposition of incident plane
waves in all directions.
The wave field is also mapped in Figs. 3(c) and 3(d)

for two distinct frequencies that are chosen outside of the
band gaps, respectively, before and after the second one
[red arrows in Fig. 2(a)]. At 5805 Hz, the mode inside the
metamaterial has a much smaller spatial scale compared to

the A0 mode in the homogeneous plate. On the contrary, a
larger effective wavelength is observed at 7512 Hz. These
maps show that, depending on the frequency, the designed
metamaterial presents a lower or higher effective phase
velocity than that of the homogeneous plate.
To quantify this effect, dispersion curves were computed

from the spatiotemporal wave field measured in the
metamaterial. For each measured point, the temporal signal
is Fourier transformed and a 2D spatial Fourier transform of
the wave field is then calculated. At each frequency, this 2D
Fourier spectrum is transformed into a frequency–wave-
number dispersion curve using a radial averaging process.
The wave physics of the metamaterial is then summarized
in a single dispersion relation that shows the real part of
the wave vector and the corresponding attenuation length
within the band gaps [Figs. 4(a) and 4(b)]. The dispersion
relations of the S0 (black) and A0 (gray) Lamb modes in the
homogeneous plate are superimposed.
Since both ordered and disordered metamaterials give

similar results, their properties arise from the resonant
nature of the rods. To prove this point, the horizontal and
vertical displacements of the rod's free end were measured
on one single isolated rod. Different resonant peaks are
observed [Fig. 4(c)] corresponding to different types of
resonance. The horizontal displacement of the rod (gray)
shows flexural resonances of the rod, while the vertical
displacement (black) reveals compressional (or elongation)
resonances. As expected, the compressional resonances are

FIG. 4 (color online). (a) Frequency–wave-number representa-
tion of the wave field measured inside the random metamaterial.
Theoretical dispersion curves for the homogeneous plate are
superimposed: in black, the S0 mode, and in gray, the A0 one. The
dashed curves correspond to the numerical dispersion curve for a
periodic metamaterial using Bloch theorem. (b) Imaginary part
of the k vector measured inside the metamaterials for both the
random (gray) and periodic (black) samples. (c) Frequency
spectrum of the horizontal (gray) and vertical (black) displace-
ments measured at the free end of one single isolated rod glued on
the upper side of the plate.

FIG. 3 (color online). Field maps on the rectangular area [see
Fig. 1(a)] for the random metamaterial. (a),(b) Snapshots of the
temporal field at 3 ms (a) and 41 ms (b) for signals filtered as in
Fig. 2(b). (c),(d) Frequency-domain field maps at two frequencies
before and after the second band gap, as indicated by the two red
arrows in Fig. 2(a).
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linearly distributed over frequency while the flexural ones
are quadratically distributed [47]. The individual response
of one rod permits us to understand the dispersion relation
of the metamaterial since each resonant peak corresponds
to a specific behavior. At first, the A0 mode of the plate
strongly hybridizes with the compressional resonances,
which gives rise to a polaritonic behavior at each crossing
of the A0 dispersion curve with these low-quality-factor
resonances. Indeed, the vertical displacement of the A0

mode efficiently couples with the compressional resonan-
ces resulting in the low Q factor due to radiation leakage.
As the metamaterial behavior results from Fano interfer-
ence between the incoming waves and the scattered waves
[24], the wide compressional resonances of the rods and
their dense organization result in wide band gaps that start
at the resonance and end at the antiresonance of one single
rod. These band gaps show strong attenuations [Fig. 4(b)]
that are insensitive to ordered or disordered configurations.
Scaled at higher frequencies, these could be used to mold
the flow of Lamb waves with applications to surface wave
devices.
Outside the band gaps, the hybridizations between the A0

mode and the rod compressional resonances give rise to
two branches, namely, the antibinding branches and the
binding ones. At frequencies above the band gaps, supra-
wavelength modes are observed [Fig. 3(d)]. On the con-
trary, the binding branches at frequencies below the band
gaps are composed of subwavelength modes with spatial
scales comparable to the average distance between rods
[see Fig. 3(c)]. Thus, the designed metamaterials can be
used for many different purposes. Indeed, as both supra-
wavelength and subwavelength modes can be efficiently
excited on large frequency bandwidths within the meta-
materials, it might be possible to tune the wave velocities,
e.g., by shaping the length of the rods, so as to realize Lamb
wave cloaks [51] or graded-index lenses [52,53]. Similarly,
the subwavelength modes can be used alongside techniques
such as time reversal in order to focus elastic waves onto
very small spatial scales or to realize deep subwavelength
sensors or actuators [20]. Note that these modes and the
associated band gaps could be analyzed in the light of
homogenization with effective parameters for Lamb waves,
independent of their ordered or disordered arrangements.
More-subtle information can also be gained from the dis-

persion relation plotted in Fig. 4(a). Indeed, weaker hybri-
dizations can be distinguished, the most visible around 4.3
or 8.7 kHz. These are related to flexural resonances of the
rods, as indicated in Fig. 4(c). Flexural resonances are a
consequence of the transverse displacement of the rods, and
they can hybridize both with the A0 and the S0 modes.
Stated differently, the plate modes created by the hybridi-
zation of the A0 modes with the compressional resonances
of the rods can hybridize again with the flexural reso-
nances, hence, leading to an unusually rich behavior. This
effect spans a narrow frequency range compared to the

measured band gaps in agreement with the fact that flexural
resonances have higher Q factors. With both flexural and
compressional resonances hybridizing with A0 and S0
Lamb modes in the plate, metamaterials made of uniaxial
subwavelength resonators fastened to a 2D elastic plate
reveal much richer physics than their acoustic or electro-
magnetic counterparts.
Finally, finite-element simulations were performed for

an infinite equivalent (ordered) metamaterial using Bloch
periodic boundary conditions applied to a unit cell made of
one rod attached at the center of a 2 cm by 2 cm elastic
plate. The numerical dispersion relation is superimposed
onto the experimental one in Fig. 4(a) (red dashed lines).
The good match confirms that the experimental random
metamaterial behaves like the infinite and periodic simu-
lated one. Moreover, the simulation gives information
that was missing in the experiment. The A0 mode, indeed,
hybridizes with both the compressional and flexural res-
onances of the rods, giving rise to complex branches with
two inflexions, while the S0 mode only hybridizes with the
flexural ones, as a signature of its symmetry. This shows
that many degrees of freedom can be used to design Lamb
wave metamaterials. Indeed, the rod length can first be
modified to adjust the compressional resonance frequencies
and, hence, modify the frequency range of the band gaps.
Furthermore, the symmetry of the resonators can be
changed using identical rods on each side of the plate,
for instance, to forbid the conversion between the A0

and S0 modes. Finally, we noticed that using a thinner
(and, thus, more flexible) plate leads to a more efficient
excitation of both the compressional and flexural resonan-
ces of the rods. These practical aspects will be the scope of
future works.
To conclude, we have experimentally studied ordered

and disordered Lamb wave metamaterials built from long
metallic rods perpendicularly attached to a thin metallic
plate. Spatiotemporal maps of the wave field inside and
outside the metamaterials were measured on a frequency
spectrum that spanned about a decade. Through this
experiment and the equivalent numerical simulations, these
composite media were shown to support sub- and supra-
wavelength modes, as well as wide band gaps. The wave
field properties do not depend on the spatial arrangement of
the resonators inside the metamaterial. The metamaterial
physics is explained through hybridizations between the A0

and S0 plate modes with the flexural and compressional
resonances of the rods. This work paves the way to the
design of metamaterials allowing an unprecedented control
of Lamb wave propagation.
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