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We demonstrate the counterintuitive dispersion effect that the peaks (dips) in the gain spectrum
correspond to abnormal (normal) dispersion, contrary to the usual Kramers-Kronig point of view. This
effect may also lead to two unique features: a broadband abnormal dispersion region and an observable
Hartman effect. These results are explained in terms of interference and boundary effects. Finally, two
experiments are proposed for the potential experimental verification.
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The control of pulse propagations in various optical
devices has received a lot of attention for many years [1–6],
since it is very important for classical and quantum
information processing of light. The laws of pulse prop-
agations are completely determined by the reflected and
transmitted transfer functions (TFs). These TFs, like the
dielectric constants, are directly related to the dispersion
relations, and they usually obey the conventional Kramers-
Kronig (CKK) relations in the form of Hilbert transforms
[7–9]. There have been papers dealing with the critical
dispersion phenomena (related to the singular points and/or
zeros of these TFs) in certain complicated circumstances,
such as a Gires-Tournois interferometer [10], optical
“all-pass” filters [11], and lossy or gain-assisted resona-
tor-coupling systems [12–14]. Recently, Stern and Levy
studied the flexibly controlling time delays in the integrated
atomic cladding waveguide, where the amplitude and the
phase of the system’s TF are not connected through the CKK
relations [15]. The common feature in all of these inves-
tigations involves the multiple interference effects of light.
It is well known that multiple interference effects always

exist even for a simple dispersive slab, and the interaction
between the slab cavity and the dispersive medium may
induce the vacuum Rabi splitting effect [16]. It is widely
believed that, in gain systems, a gain peak usually corre-
sponds to normal dispersion, while the dip between two
gain peaks corresponds to abnormal dispersion. It is
worthwhile, therefore, to ask if the interference effect
can alter the whole dispersion relation in a gain slab.
The purpose of this Letter is to address the existence of

counterintuitive dispersion in gain slabs. It shows that the
singular points (SPs) of the reflection and transmission
coefficients for a gain slab can be controlled simply by
increasing its thickness, while this is impossible for a
passive slab. The movement of the SPs into the upper-half

complex frequency plane leads to the counterintuitive
dispersion effect that the abnormal (normal) dispersions
correspond to the peaks (dips) in the gain spectrum,
contrary to the usual belief. This novel effect has not been
explored in slab systems before. The systems studied here
differ from the previous studies as our systems include
material dispersion and do not involve any artificial con-
stants. The phenomenon seems counterintuitive from the
CKK point of view; however, the causality of the present
system is always preserved.
For simplicity, a light pulse Eiðz ¼ 0; tÞ is incident

normally on a nonmagnetic slab in vacuum. Here only
the transverse-electric plane-wave pulses are present, and
the results are similar for the transverse-magnetic plane-
wave pulses. The slab is extended from z ¼ 0 to z ¼ dwith
the relative complex permittivity εðωÞ. Note that Eið0; tÞ
can be decomposed into its Fourier components ~Eið0;ωÞ.
From the boundary conditions and Maxwell equations, the
reflection and transmission coefficients of the slab, rðωÞ
and tðωÞ, respectively, are given by [17,18]

rðωÞ ¼ −ið1 − εÞε−1=2 sin ðkdÞ=gðωÞ; ð1Þ
tðωÞ ¼ 2=gðωÞ: ð2Þ

Here gðωÞ ¼ 2 cos ðkdÞ − ið1þ εÞε−1=2 sin ðkdÞ with k ¼
ωε1=2=c being the complex wave number inside the slab, c
is the speed of light in vacuum, and d is the slab’s thickness.
The coefficients rðωÞ and tðωÞ are usually rewritten
into the exponential form [10,19,20] FðωÞ ¼ elnFðωÞ ¼
eln jFðωÞjþiϕFðωÞ, where F denotes r or t, and jFðωÞj and
ϕFðωÞ are the amplitude and the phase, respectively. In slab
systems, ln jtð0Þj ¼ 0, but ln jrð0Þj is undefined since
rð0Þ ¼ 0. Thus, jtðωÞj and ϕtðωÞ usually satisfy the
CKK relations [7,8]
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ln jtðνÞj
ν2 − ω2

dν: ð4Þ

Here P denotes the Cauchy integral principal value. That is
to say, there are no SPs in the upper-half complex frequency
( ~ω ¼ ω0 þ iω00) plane. Since the slab material, εðωÞ, obeys
the Kramers-Kronig relations, from the comparison of
Eqs. (1) and (2), we can conclude that the SPs in rð ~ωÞ
should be the same as those in tð ~ωÞ, except for a zero point
at ~ω ¼ 0. However, here we show the existence of the SPs
in the upper-half ~ω plane in a gain slab (see the following
derivations). It should be emphasized again that although
the existence of the SPs in the upper-half ~ω plane breaks the
CKK relations, the causality of the gain slab system is
always preserved.
For a complex ε, when there are SPs in both rð ~ωÞ and

tð ~ωÞ, it means gð ~ωÞ ¼ 0 in the complex domain. In order to
obtain an intuitive picture, ε is assumed to be a complex
constant [21]. Under this assumption, the SP, obtained from
the solution of gð ~ωÞ ¼ 0, is located at

ω0 ¼ c
djεj ½nrðmπ − αÞ − niβ�; ð5Þ

ω00 ¼ −
c

djεj ½niðmπ − αÞ þ nrβ�; ð6Þ

where α ¼ tan−1½2ni=ðjεj − 1Þ�, β ¼ tanh−1½2nr=ð1þ jεjÞ�,
and nr ¼ Reð ffiffiffi

ε
p Þ and ni ¼ Imð ffiffiffi

ε
p Þ are the real and

imaginary parts of the complex refractive index, respec-
tively. Here the integer m can be estimated by
m ¼ ½ð1=πÞðReðkdÞ þ αÞ�, where “½·�” is a round function.
In order to reveal the condition of the SPs in the upper-half
~ω plane, three cases of the slab are discussed below.
Case 1.—For a lossless slab (ni ¼ 0), from Eq. (6), it is

found that ω00 ¼ −ðcβ=dnrÞ < 0, since nr > 0 for non-
magnetic materials. Thus the CKK relations should be
always valid in this case.
Case 2.—For a lossy slab (ni > 0), it can be proved that

ω00 < 0 is always satisfied. This means that the CKK
relations are still valid for any lossy dielectric slab.
Therefore, for a passive slab, there is no possibility to
obtain the novel dispersion beyond the CKK relations.
Case 3.—For a gain slab (ni < 0), it can be proved that

ω00 > 0, when the following condition is satisfied:

jnij
�
mπ þ tan−1

�
2jnij
jεj − 1

��
> nrβ: ð7Þ

Here m is controlled by the slab thickness d. In Fig. 1, we
plot the different situations satisfying the condition (7)
under three values of m. It is clear that as m increases, the
limitation on ni gradually disappears. Thus, for any ni < 0,

as long as m is large enough, the inequality (7) can be
always satisfied. A large jnij requires a small m for
satisfying the condition (7). Therefore, for the gain slab
with a thickness larger than a critical value, the CKK
relations are inapplicable [22].
Now let us present the picture of how the SPs move into

the upper-half ~ω plane. Here the slab medium is a single
Lorentz model: εðωÞ ¼ 1þM=ðω − ω0 þ iγÞ with M > 0
for a gain medium and ω0 a constant. We use the numerical
method to obtain the SPs from solving gð ~ωÞ ¼ 0 in the
complex domain. Figure 2(a) demonstrates the evolutions
of the main SPs as the thickness increases. Note that those
slowly moving SPs are not shown in Fig. 2(a). Initially the
SPs are in the lower-half plane (ω00 < 0). It is seen that the
SPs will move spirally from the side of ω0 − ω0 > 0 into
the other side of ω0 − ω0 < 0 with increasing d. On the
ω00 ∼ d projection plane, it is found that the minimal critical
thickness dc in this example is about 29.5 μm (denoted by
the highlight red arrow). For d < dc, no SPs are in the
upper-half ~ω plane, while for d > dc, more and more SPs
move into the upper-half ~ω plane. Therefore, it is expected
that the behavior of the whole dispersion for the slab will
change dramatically.
Figures 2(b)–2(d) show the typical changes of the

amplitude and phase of both rðωÞ and tðωÞ and the
locations of the corresponding SPs under three different
cases: Fig. 2(b), d ≈ 22.5 μm (< dc); Fig. 2(c), d ≈
31.5 μm (> dc); and Fig. 2(d), d ≈ 70.5 μm (≫ dc).
When d < dc, in Fig. 2(b), the phase curves (ϕr;t) (i.e.,
dispersion) for both rðωÞ and tðωÞ are normal inside the
gain peaks, which are in agreement with the normal
dispersion properties for an ordinary gain medium.
Actually, there are infinite SPs that are splitted from
~ω ¼ −iγ (when d ¼ 0), see the inset in the right-side
figure of Fig. 2(b). However, in Fig. 2(c), when d > dc,
ϕr;t become anomalous near ω0, since one SP moves into
the upper-half ~ω plane. The inverse effect of the dispersion
seems counterintuitive from the usual accepted point of
view that the normal dispersion usually corresponds to the
peak in the gain spectrum. When d ≫ dc, see Fig. 2(d), ϕr;t
may have the broad abnormal dispersion region, compared
with the original width (γ) of the single-Lorentz dispersion.
This is a unique feature that the slab becomes a completely
fast-light device in the whole spectrum. Here three SPs
appear in the upper-half ~ω plane, see the right side of

FIG. 1. The gray area obeying the condition (7) under (a)
m ¼ 0, (b) m ¼ 1, and (c) m ¼ 5.
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Fig. 2(d). The dispersion in Fig. 2(d) is also totally different
from that of the Rabi splitting effect [16]. In fact, as the
number of the SPs in the upper-half ~ω plane increases, the
anomalous dispersion regions in rðωÞ and tðωÞ may
become much broader. The counterintuitive dispersion in
Figs. 2(c)–2(d) implies that the CKK relations for rðωÞ and
tðωÞ are no longer valid for d > dc.
When the slab consists of a gain double-Lorentz model

εðωÞ ¼ 1þM=ðω−ω0 þΔþ iγÞ þM=ðω−ω0 −Δþ iγÞ
with M > 0, ω0 a constant, and Δ > 0, if d is larger than
a critical value, there are the similar counterintuitive

dispersion effects that the dip between two gain peaks
corresponds to the normal dispersion, while the two peaks
correspond to the abnormal dispersion regions. Meanwhile,
the very broad abnormal dispersion region is observable
with suitable parameters.
In order to understand these counterintuitive effects, we

now discuss the reflected and transmitted group delays of a
narrow-spectrum pulse (Δω ≪ ω), defined by [23–25]
τr;t ¼ ∂ϕr;tðωÞ=∂ω. Figures 3(a) and 3(b) demonstrate
respectively the changes of both τr and τt as a function
of d in the slab of a gain single-Lorentz medium. The
amplitude and phase for rðωÞ and tðωÞ are correspondingly
shown in Figs. 3(c) and 3(d). Both τr and τt have transition
characteristics from positive to negative at differen ω.
When d is small, the initial dispersion of the slab near
ω0 is normal so that both τr and τt are positive, since it is
normal dispersion for the gain slab with a single Lorentz
medium. However, when d is large enough, both τr and τt
can be negative due to the violation of the CKK relations
for rðωÞ and tðωÞ as the SPs move into the upper-half ~ω
plane. This is a distinct effect from the previous studies [26]
where only τr can be reversed due to the slab’s resonances.
The oscillation features in τr and τt due to the slab’s
resonances have also been studied theoretically and exper-
imentally [18,25]. As d > dc, τr tends to be a constant
(independent of the slab’s thickness). This is also known as
the Hartman effect [27,28], and the corresponding reflected
phase also tends to a constant. However, there is no
Hartman effect for τt since ϕt increases initially, then
decreases and becomes negative as d increases. From the

FIG. 2 (color). (a) Evolutions of the SPs with increasing d. The
points on the ω00 ∼ d plane are the projection of the SPs for the
easy observation. The critical thickness is denoted by the high-
light red arrow. Here it only demonstrates the main SPs that are
moving quickly. (b)–(d) Typical changes of the amplitude and
phase of rðωÞ (left) and tðωÞ (middle) and the locations of the SPs
in the ~ω plane (right) under three cases: (b) d ≈ 22.5 μm (< dc),
(c) d ≈ 31.5 μm (> dc), and (d) d ≈ 70.5 μm (≫ dc). The
inset of the right-side figure in Fig. 2(b) shows a series of SPs
that are nearly overlapped and are hard to distinguish. The slab
medium has εðωÞ ¼ 1þM=ðω − ω0 þ iγÞ with ω0 ¼ 1014 Hz,
M ¼ 10−4ω0, and γ ¼ 2 × 10−4ω0.

FIG. 3 (color). The changes of (a) τr and (b) τt as a function of d
at different frequencies, and the corresponding changes of the
amplitude and phase for (c) rðωÞ and (d) tðωÞ. Dashed, solid, and
dash-dotted curves denote the cases of ω ¼ ω0, ω0 þ 0.4γ, and
ω0 þ 0.8γ, respectively. Other parameters are the same as
in Fig. 2.
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comparison between Figs. 3(a)–3(b) and Figs. 3(c)–3(d),
the transition behaviors in τr and τt are quantitatively in
agreement with the maximal phases in ϕr and ϕt, respec-
tively. Meanwhile, jrðωÞj goes to a constant value but jtðωÞj
goes to zero for a large d [see Figs. 3(c)–3(d)]. Thus, it is
easy to measure τr but not τt in experiments for verifying
this phenomenon.
The physical mechanism for such counterintuitive

dispersion effects occurring can be explained in terms of
the multiple interference and boundary effects in the gain
slab. The total electric field inside the slab is expressed as [29]
~Eðz;ωÞ ¼ ~Eið0;ωÞ½Aeikz þ Be−ikz� for 0 ≤ z ≤ d, where
A ¼ ð1þ ε−1=2Þe−ikd=gðωÞ and B ¼ ð1 − ε−1=2Þeikd=gðωÞ
from the boundary conditions at z ¼ 0 and d. For d < dc,
both the forward and backward fields are of the same order.
For d → dc, both A and B reach their critical values since
gð ~ωÞ vanishes in the complex domain. For dc ≪ d < ∞,
A≈ð1þε−1=2Þe−i2kd=ð1−ΩÞ→0withΩ¼ðε1=2þε−1=2Þ=2,
while B ≈ ð1 − ε−1=2Þ=ð1 − ΩÞ. This means that for d ≫ dc,
there is only the existence of the backward field (∼e−ikz) and
the forward field (∼eikz) is suppressed [30]. The backward
field leads to the negative transmitted phase. Although the
slab medium is normal, the total dispersion becomes
anomalous due to the boundary effect. Meanwhile, for
dc ≪ d < ∞, rðωÞ → ð1þ ε1=2Þ=ð1 − ε1=2Þ and tðωÞ ≈
−4ε1=2e−ikd=ð1 − ε1=2Þ2 [31]. Therefore, both jrðωÞj and
ϕr tend to be constants, and jtðωÞj decays and ϕt also
decreases and even becomes negative due to the term e−ikd.
The steady value of τr as a function of ω is plotted in Fig. 4
for two cases. There is a remarkable effect that τr is
completely reversed with the results of the semi-infinite
cases [32]. The steady value of τr for the gain single-Lorentz
model slab becomes negative (anomalous dispersion). For the
slab of the double-Lorentz model [33], the steady value of τr
between two gain peaks becomes positive (normal
dispersion) while it is negative (anomalous dispersion) for
the gain peaks.
Can one verify these counterintuitive effects? Here two

potential experiments are discussed. First, the slab is a gain
single-Lorentz medium, εðωÞ¼1þω2

p=ðω2−ω2
0þiγωÞ,

with γ=ωp ¼ 10−2 and ωp=ω0 ¼ 5 × 10−6 for the
5d½7=2�03 − 6p½3=2�1 transition (wavelength ¼ 3.507 μm)
of Xe atomic gas as suggested in Refs. [34,35]. Under these
parameters, the dc of the slab is about 20.06 mm (atω ¼ ω0),
which is estimated from Eq. (6) and is an accessible thick-
ness. When d ∼ 140 mm, τr reaches its steady value in the
range about ð−10;−75Þ ns within ω ∈ ðω0 − γ;ω0 þ γÞ,
[like Fig. 4(a)]. The transmitted pulse is completely forbidden
since tðωÞ → 0. Second, the slab may be a gain double-
Lorentz medium, which was realized by using the
atomic Cs vapor slab with the Raman scheme [33]. The
experimental data in Ref. [33] are ω0=2π ¼ 3.5 × 1014 Hz,
M=2π ¼ 2.262 Hz, Δ=2π ¼ 1.35 MHz, and γ=2π ¼
0.46 MHz. In this situation, dc is about 732.18 mm (at
ω ¼ ω0 þ Δ), which is hard to realize. Fortunately, the

value M can be controlled by increasing the effective
atomic density difference of states jF ¼ 4; m ¼ −4i and
jF ¼ 4; m ¼ −2i, which are the hyperfine magnetic sub-
levels of the ground state 6S1=2 of Cs atomic gas [33]. When
M increases 100 times, then dc becomes about 4.837 mm,
and in this case τr reaches its steady value in the range be-
tween ∼ − 320 to ∼280 ns within ω ∈ ðω0 − 5γ;ω0 þ 5γÞ
for d ≈ 40 mm, like the solid curve of Fig. 4(b). Other
candidates may also be possible, such as in the double-
lambda scheme in the Rb atomic vapor [36] and in the slab
consisting of a negative-refraction active dense gas of
atoms [37].
In summary, the counterintuitive effects on the dis-

persion are demonstrated when the gain slab’s thickness
is larger than a critical value, and the condition for the
appearance of the counterintuitive dispersion is presented.
It should be noted that, for observing these novel dispersion
effects, one can also increase the gain instead of changing
the slab’s thickness. Here the CKK relations of the TFs are
violated due to the breaking of the “passivity” [9,11]. But
the system’s causality is still preserved, because the
impulse response function has no component that appears
earlier than the input impulse. In particular, optical pre-
cursors always travel at the speed of light in both normal
and abnormal dispersive media [38]. Two unique features
(the broadband abnormal dispersion region and the observ-
able Hartman effect) are predicted, and these properties
are significant to observe the superluminal propagations
[39,40]. The physical mechanism of the counterintuitive
effects is explained as a result from the domination of the
backward wave in the gain slab due to interference and
boundary effects. Finally, two possible experiments (using Xe
andCs atomicmedia) are suggested toverify the effects. These
results are very important to obtain the novel dispersion,
beyond the CKK relations, in gain slabs and even other
structures. This may become the basis of future research.
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