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We study ’t Hooft anomalies for a global discrete internal symmetry G. We construct examples of
bosonic field theories in three dimensions with a nonvanishing ’t Hooft anomaly for a discrete global
symmetry. We also construct field theories in three dimensions with a global discrete internal symmetry
G1 × G2 such that gauging G1 necessarily breaks G2 and vice versa. This is analogous to the Adler-Bell-
Jackiw axial anomaly in four dimensions and parity anomaly in three dimensions.
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Introduction.—Since the discovery by Bell and Jackiw
[1] and Adler [2] of the anomalous nonconservation of the
axial current, anomalies have played an increasingly
important role in particle physics. Recently anomalies
found applications in condensed matter physics: they
appear, implicitly or explicitly, in the classification of
Symmetry Protected Topological (SPT) phases [3,4].
This viewpoint sheds a new light on anomalies and leads
to some surprising conclusions. Motivated by these devel-
opments, we study anomalies of global discrete internal
symmetries. In particular, we show that such anomalies can
afflict bosonic field theories in odd space-time dimensions.
There are several different but related kinds of anoma-

lies. The original ABJ discovery [1,2] was that a classical
symmetry can be violated on the quantum level. We will
call this phenomenon an ABJ anomaly. Anomalies can also
affect gauge symmetries; gauge theories which suffer from
such anomalies are inconsistent on the quantum level.
Finally, it might happen that a global symmetry is con-
sistent on the quantum level, but cannot be promoted to a
gauge symmetry because the resulting gauge theory would
be anomalous. In such a case one says that a global
symmetry has an ’t Hooft anomaly [5]. ’t Hooft argued
that ’t Hooft anomalies of continuous symmetries are
preserved under RG flow and thus constrain possible
RG trajectories.
The source of all these anomalies is chirality: either the

theory itself is chiral or the global symmetry acts in a chiral
way. Since chiral matter exists only in even space-time
dimensions, it is often said that in odd space-time dimen-
sions anomalies are absent. However, in odd space-time
dimensions there is another source of chirality, namely
Chern-Simons couplings. This suggests that there may be
anomalies whose existence depends on Chern-Simons
interactions. It is this mechanism that causes the parity
anomaly of three-dimensional gauge theories with fermions
[6]. In these theories, maintaining gauge-invariance may

require adding a Chern-Simons interaction which breaks
parity. This is an ABJ anomaly for a global space-time
symmetry. We will show that a similar mechanism can lead
to anomalies for global discrete internal symmetries in
bosonic theories.
’t Hooft anomalies and group cohomology.—ABJ and ’t

Hooft anomalies are closely related, and it is instructive to
address the latter first. ’t Hooft anomaly for a global
symmetry group G is an obstruction for gauging G. If G
is a connected Lie group, the form of the ’t Hooft anomaly
is tightly constrained by the Wess-Zumino consistency
conditions [7]. They imply that in d space-time dimensions,
possible anomalies for G are classified by Chern-Simons
actions in dimension dþ 1 [8]. An intuitive reason for this
is as follows. On a dþ 1-manifold with a boundary, the
Chern-Simons actions is gauge-invariant only up to boun-
dary terms. To cancel the boundary terms, one has to couple
the bulk theory to a d-dimensional boundary theory with an
’t Hooft anomaly for G. This mechanism for canceling ’t
Hooft anomalies is called anomaly inflow. Conversely, if
one assumes that an ’t Hooft anomaly in d dimensions can
be canceled by an anomaly inflow from dþ 1 dimensions,
then anomalies in d dimensions must be classified by
possible Chern-Simons actions in dþ 1 dimensions.
If G is not connected, Wess-Zumino consistency con-

ditions are not as constraining. In the extreme case of a
finite symmetry group G, they become vacuous. As a
substitute, let us assume that the anomaly can be canceled
by inflow from dþ 1 dimensions. Then ’t Hooft anomalies
in d dimensions should be classified by topological actions
in dþ 1 dimensions [4]. For general G, such actions are
classified by elements of the Abelian group Hdþ2ðBG;ZÞ
[9]. Here BG is the classifying space for G bundles [10].
Typically, BG is an infinite-dimensional space defined up
to homotopy equivalence. For example, for G ¼ Uð1Þ one
can take BG ¼ CP∞. For finite G there is a nice explicit
construction of BG [11].
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The classification of topological actions in terms of
cohomology of BG assumes that the action depends only
on the gauge field. For fermionic systems the action may
also depend on the spin structure, and then more compli-
cated actions exist [4,9]. In this note we focus on bosonic
systems and their anomalies.
From now on G will be a finite symmetry group. For

finite G we have an isomorphism Hdþ2ðBG;ZÞ≃
Hdþ1ðBG;Uð1ÞÞ [12]. Note that the same group classifies
bosonic SPT phases with global symmetry G in dþ 1
dimensions [3]. The reason for this is as follows. Group
cohomology classification of SPT phases relies on gauging
G and integrating out everything except the gauge field for
G. This gives an effective topological action for the G
connection, and such actions for finite G are classified by
Hdþ1ðBG;Uð1ÞÞ [9]. Consequently, the boundary of an
SPT phase classified by a cohomology class ω ∈
Hdþ1ðBG;Uð1ÞÞ must either break G spontaneously or
carry a field theory with a global symmetry G which has an
’t Hooft anomaly ω [3,4].
The anomaly inflow assumption does not always hold:

there exist theories whose ’t Hooft anomalies cannot be
canceled by anomaly inflow and thus are not related to SPT
phases [13]. Since our main goal here is to produce new
examples of anomalous theories, we need not delve into
this issue.
’t Hooft anomalies in three dimensions.—In d ¼ 3

the relevant cohomology group is H4ðBG;Uð1ÞÞ. This
cohomology group is nonvanishing for G ¼ Zn × Zn:
H4ðBðZn × ZnÞ; Uð1ÞÞ ¼ Zn × Zn. (In contrast,
H4ðBZn; Uð1ÞÞ ¼ 0 for all n [12].) Thus there should
exist three-dimensional field theories with a global sym-
metry group Zn × Zn which cannot be gauged.
To produce an example of such a theory we use the

insight of Ref. [14], which argued that on a gapped
boundary of an SPT phase the global symmetry G must
either be broken or realized projectively. That is, relations
between generators of G hold only modulo elements of a
gauge group N. Then the symmetry of the theory is not a
product G × N, but an extension of G by N. By definition,
an extension of G by N is any group Ĝ which has N as a
normal subgroup and such that Ĝ=N ¼ G. N has to be a
normal subgroup, because conjugation by any element of Ĝ
must map a gauge symmetry to a gauge symmetry. We will
be interested in the special case when N is Abelian and G
acts trivially on the gauge fields. Then every element of Ĝ
commutes with every element ofN, and one says that Ĝ is a
central extension of G by N. Central extensions are
classified by the cohomology group H2ðBG;NÞ [12].
Note that even if both G and N are Abelian, Ĝ may be
non-Abelian.
Suppose that the full symmetry group Ĝ is a central

extension of G by an Abelian gauge group N. In general,
the fact that G acts projectively need not lead to ’t Hooft
anomalies. Let N ¼ Z2, Ĝ ¼ Z4 and G ¼ Z2. Here G is

generated by a single element g satisfying g2 ¼ n, where n
is the generator of N. This is an example of a nontrivial
extension of Z2 by Z2. It is easy to construct models where
the global Z2 acts as above but nevertheless can be gauged.
For example, consider a Uð1Þ gauge theory coupled to a
pair of scalars which transform as a doublet of Uð2Þ. The
global symmetry is Uð2Þ=Uð1Þ ¼ SUð2Þ=Z2. Suppose
further that the model has a singlet scalar of charge 2
which condenses at a high energy scale and spontaneously
breaks Uð1Þ to Z2. The global SUð2Þ=Z2 contains a Z2

subgroup generated by a transformation

g∶ϕ�↦� iϕ�; g2 ¼ −1: ð1Þ
Clearly, there is no obstruction for gauging the wholeUð2Þ,
which includes the finite subgroup generated by g.
On the other hand, a projective action of G opens a

possibility for a ’t Hooft anomaly. To construct an example
with a ’t Hooft anomaly, consider Uð1Þ Chern-Simons
theory at level 2n coupled to some scalar fields. The precise
matter content is not important, but it must be such that
the action is invariant under a Zn × Zn symmetry, and the
relations between generators hold up to elements of the
gauge group Uð1Þ. For example, we may consider n scalar
fields of charge 1 on which the generators x and y of
Zn × Zn act as n × n “clock” and “shift” matrices U and V
satisfying

Un ¼ 1; Vn ¼ 1; VU ¼ e2πi=nUV: ð2Þ
This central extension of Zn × Zn is the generator of
H2ðBG;Uð1ÞÞ ¼ Zn. More generally, we may postulate
that x and y act as Uq and Vq for some integer q,
corresponding to the extension parameter
q ∈ H2ðBG;Uð1ÞÞ.
Consider now gauging the Zn × Zn symmetry by cou-

pling the theory to a Zn × Zn gauge field. We will regard
Zn × Zn as a subgroup of Uð1Þ ×Uð1Þ and represent the
Zn × Zn gauge field by a pair of Uð1Þ gauge fields A1, A2.
These fields are flat and their holonomy must take values in
nth roots of unity. Therefore we must have nAi ¼ dϕi,
i ¼ 1, 2, where ϕ1;2 are 2π-periodic scalars. These scalars
have a transparent physical meaning: they can be regarded
as phases of complex Higgs fields whose vacuum expect-
ation values break Uð1Þ × Uð1Þ down to Zn × Zn. That is,
under the gauge transformations Ai↦Ai þ dfi, the scalars
transform as

ϕ↦ϕi þ nfi: ð3Þ
Note that while A1 and A2 are flat, they are not necessarily
globally well-defined one-forms. Indeed, the above con-
straints allow the transition functions to be arbitrary nth
roots of unity. Accordingly, the first Chern class for Ai can
be nontrivial (but it becomes trivial when multiplied by n;
i.e., it is an n-torsion cohomology class).
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The most general topological action describing the
coupling of the Chern-Simons gauge field a to A1, A2 is

S3 ¼
1

2π

Z �
nadaþ p1A1daþ p2A2daþ p3n2

2π
aA1A2

�

þ FðA1; A2Þ; ð4Þ

where the local functional F depends only on A1;2. Here we
use the differential form notation for gauge fields. The
coefficients p1 and p2 are Zn × Zn charges of a Dirac
monopole for a and therefore must be integral. The
coefficient p3 must also be integer for expðiS3Þ to be
invariant under the Uð1Þ gauge transformation a↦aþ df,
where f is an arbitrary 2π-periodic scalar. It remains to
determine the transformation properties of a underZn × Zn
gauge symmetry. In our approach, the symmetry is
enhanced to Uð1Þ × Uð1Þ, but this is compensated by
the presence of two periodic scalars ϕi which transform
as in (3). Requiring the action be invariant up to terms
which are independent of a forces the following trans-
formation laws:

a↦a −
p3

4π
f1dϕ2; a↦aþ p3

4π
f2dϕ1: ð5Þ

These are well defined provided p3 is even. These unusual
transformation laws reflect that Zn × Zn is realized pro-
jectively. Indeed, the commutator of the above transforma-
tions is a Uð1Þ gauge transformation for a with the
parameter f ¼ p3nf1f2=4π. Thus the generators x and y
of Zn × Zn do not commute, and their commutator is a
Uð1Þ gauge transformation of the form expðifÞ ¼
expð2πip3=2nÞ. That is, the symmetry group Ĝ is a central
extension of Zn × Zn with the extension param-
eter q ¼ p3=2.
We can now compute how the action (4) transforms

under Zn × Zn gauge transformations. For the first Zn we
get

S3↦S3 þ
p3n
8π2

Z
f1ðp1A2dA1 þ p2A2dA2Þ

þ FðA1 þ df1; A2Þ − FðA1; A2Þ; ð6Þ

for the second Zn we get

S3↦S3 −
p3n
8π2

Z
f2ðp1A1dA1 þ p2A1dA2Þ

þ FðA1; A2 þ df2Þ − FðA1; A2Þ: ð7Þ

It is easy to check that one cannot choose the local
functional F so as to cancel both variations. This shows
that the theory has an ’t Hooft anomaly. On the other hand,
one can cancel the anomaly by coupling the 3d theory to a
4d gauge theory with gauge group Zn × Zn and an action

S4 ¼ −
np3

8π2

Z
M4

A1A2ðp1dA1 þ p2dA2Þ; ð8Þ

where M4 is a four-dimensional manifold whose boundary
is the 3d space-time. One can show that this continuum
action describes Dijkgraaf-Witten theory for the gauge
group G ¼ Zn × Zn. The corresponding element in
H4ðBG;Uð1ÞÞ ¼ Zn × Zn is ðp3p1=2; p3p2=2Þ. (An
analogous continuum description of the two-dimensional
Dijkgraaf-Witten theory has been studied in detail in [15]).
ABJ anomalies in three dimensions.—ABJ anomalies are

closely related to ’t Hooft anomalies. For example, one can
interpret the famous axial anomaly as arising from an ’t
Hooft anomaly for Uð1Þem ×Uð1ÞA. In general, suppose a
global symmetry group has the product formG ¼ G1 ×G2.
Suppose also that G has a nontrivial ’t Hooft anomaly,
while both G1 and G2 have a trivial ’t Hooft anomaly.
Mathematically, this means that the cohomology class
ω ∈ H4ðBG;Uð1ÞÞ becomes trivial when restricted to
BG1 or BG2 (for example, because H4ðBG1; Uð1ÞÞ ¼
H4ðBG2; Uð1ÞÞ ¼ 0). Then G1 or G2 can be gauged, but
not the whole G. What is the fate of G2 in a theory with a
gaugedG1? Either it is still a global symmetry or it is not. If
it is a symmetry, then it must have a nontrivial ’t Hooft
anomaly. But ifH4ðBG2; Uð1ÞÞ is trivial, this is impossible.
Hence G2 is not a symmetry; i.e., gauging G1 necessarily
breaks G2, regardless of the precise form of the action for
the G1 gauge field. Conversely, gauging G2 necessarily
breaks G1. We may regard this as a form of ABJ anomaly.
The example with G ¼ Zn × Zn from the previous

section has exactly the right structure, since
H4ðBZn; Uð1ÞÞ ¼ 0. To be concrete, we set n ¼ 2,
p1 ¼ 1, p2 ¼ 0, p3 ¼ 2. Thus we have a Uð1Þ Chern-
Simons theory coupled to a pair of complex scalar fields of
charge 1. Generators x and y of Z2 × Z2 global symmetry
act on scalar fields as Pauli matrices σ3 and σ1. We may also
have other fields on which Z2 × Z2 acts trivially. In
addition, p1 ¼ 1 implies that a Dirac monopole for the
Uð1Þ gauge field is odd under the Z2 generated by x. There
is no obstruction for gauging this Z2. Let us now show that
any consistent gauging breaks the second Z2. Both the
original Uð1Þ gauge symmetry and the first Z2 are sub-
groups of Uð1Þ ×Uð1Þ which acts on the two scalar fields
by diagonal matrices. As a preliminary step, let us gauge
this Uð1Þ ×Uð1Þ symmetry, and let b1 and b2 be the
corresponding gauge fields. Then we spontaneously break
the gauge group down to Uð1Þ × Z2 by condensing an
additional scalar with Uð1Þ ×Uð1Þ charge ð2;−2Þ and
neutral under Z2 × Z2. As a result of the gauge symmetry
breaking, we are left with a Uð1Þ gauge field a and a Z2

gauge field A1 (i.e., A1 is a Uð1Þ gauge field such that
2A1 ¼ dϕ for some 2π-periodic scalar ϕ). In the low-
energy theory the fields b1 and b2 can be parametrized as
follows:
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b1 ¼ a; b2 ¼ aþ A1:

Our goal is to obtain a topological action for a and A1

which has the form (4) with A2 ¼ 0 and the desired values
of the parameters, i.e.,

S3 ¼
1

2π

Z
ð2adaþ A1daÞ þ…;

where dots denote terms which do not depend on a. On the
other hand, the most general Chern-Simons action for b1
and b2 has the form

X
i;j

Kij

4π

Z
bidbj;

where Kij is a symmetric integral matrix. Expressing b1
and b2 in terms of a; A1, we find the following constraints
on Kij,

K11 þ K22 þ 2K12 ¼ 4; 2K22 þ 2K12 ¼ 2;

which implies K11 − K22 ¼ 2. Thus the Chern-Simons
couplings of b1 and b2 must be unequal.
On the other hand, the second Z2 symmetry acts by σ2

and exchanges the two scalar fields which couple to b1 and
b2, respectively. Thus it must also exchange b1 and b2. But
since K11 and K22 are unequal, the Chern-Simons cou-
plings necessarily break the secondZ2 symmetry. Since the
breaking of G2 ¼ Z2 is due to topological terms in the
action, it can be regarded as a quantum effect analogous to
the ABJ anomaly. The analogy with the parity anomaly of
three-dimensional gauge theories is even closer. There
gauge-invariance forces one to choose the Chern-Simons
level k to be half-integral, excluding the parity-invariant
value k ¼ 0 [6]. Similarly, in our example Uð1Þ ×G1

gauge invariance together with the requirement that the
topological action for Uð1Þ ×G1 took the desired form
forces us to break the remaining global Z2 ¼ G2.
Concluding remarks.—The ’t Hooft anomalies for con-

tinuous symmetries are not affected by the RG flow and
therefore lead to constraints on the IR behavior of theories
[5]. This is true even if the symmetry in question is
spontaneously broken, since breaking a continuous sym-
metry results in Goldstone bosons, and a ’t Hooft anomaly
gives rise to Wess-Zumino-Witten terms in their effective
action [8].
For discrete symmetries the situation is different, since

spontaneous breaking of discrete symmetries does not lead
to massless particles. A phase with a discrete global
symmetry G broken down to nothing is always possible
and has trivial ’t Hooft anomaly, regardless of the ’t Hooft
anomaly of the UV theory. But if some subgroup G0 ⊂ G
remains unbroken, the same argument as for continuous
symmetries shows that ’t Hooft anomalies for G0 must be
the same in the UV and the IR.

Further, we saw that even massive QFTs can have
nontrivial ’t Hooft anomalies, if at long distances they
reduce to sufficiently complicated TQFTs. Thus a non-
vanishing ’t Hooft anomaly in general does not rule out a
gapped phase with an unbroken symmetry: it only rules out
a trivial gapped phase with an unbroken symmetry.
Note that in [14] it was proposed that phases with this

property (gapped phases with a symmetry G which, while
unbroken, requires topological order) are precisely the
gapped surface phases of bosonic SPTs in one dimension
higher. Butwe saw above that such phasesmay have trivial ’t
Hooft anomalies. One such example is G ¼ Z2 × Z2,
N ¼ Z2, and a trivial topological action for the N-valued
gauge field. In this case, G may act projectively on the
scalars, in which case the Z2 gauge symmetry cannot be
brokenwithout breaking some ofG. TopologicalZ2 order in
such a theory is “protected” by the global discrete symmetry
G. Nevertheless, such a theory has a trivial ’t Hooft anomaly
and therefore the corresponding SPT phase in four dimen-
sions is trivial in the group cohomology classification.
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Note added.—After this paper appeared on the electronic
preprint archive, we learned that related results have been
obtained by Cho et al. [16].
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