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The magnitude and variability of Earth’s biodiversity have puzzled scientists ever since paleontologic
fossil databases became available. We identify and study a model of interdependent species where both
endogenous and exogenous impacts determine the nonstationary extinction dynamics. The framework
provides an explanation for the qualitative difference of marine and continental biodiversity growth. In
particular, the stagnation of marine biodiversity may result from a global transition from an imbalanced to a
balanced state of the species dependency network. The predictions of our framework are in agreement with
paleontologic databases.
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Biodiversity has expanded from few species at the
beginning of the Phanerozoic (541 Ma ago) to some
million species today. Large collections of fossils have
enormously increased our understanding of the history of
Earth’s biodiversity. The underlying processes governing
this diversification are, however, poorly understood, and a
compelling interpretation of the fossil data remains chal-
lenging [1]. Whereas it is commonly accepted that
continental biodiversity exhibited exponential growth
[2–6], the growth dynamics of marine life, albeit docu-
mented in substantially larger detail, has been controver-
sially debated.
Pioneering work on both the Fossil Record 2 [15] and

Sepkoski’s compendium [7] suggested that after a first
increase the total diversity remained fluctuating around a
constant level for roughly 200 × 106 years and suddenly
began to increase [8,9]. The constant level has traditionally
been associated with the equilibrium of a logistic growth. In
particular, Sepkoski identified three evolutionary faunas
and modeled their diversity by three coupled logistic
equations with model parameters fitted to the fossil data
[10,11]. This model explains the emergence of a biodiver-
sity equilibrium together with a subsequent increase. A
model combining exogenous impacts and logistic growth
has been suggested by Courtillot and Gaudemer [12]. Their
model is based on four time segments separated by three
mass extinctions, where each segment is described by a
logistic growth process with an individual equilibrium
level. More recently, an analysis that identifies and over-
comes the sampling bias in previous fossil data analyses
suggests that the increase in biodiversity after the 200 × 106

year period of stagnation may be a mere artifact [13],
consequently simple logistic growth with fluctuations
around a single equilibrium level would be a sufficient
model (see Fig. S1 in the Supplemental Material [14]).

These models are based on the assumption that new
species establish and remain present only if they success-
fully compete for space or resources. Therefore, the
diversity at large scales approaches an equilibrium as a
result of a global logistic growth process. Empirical
evidence for this hypothesis has been found in the fossil
data [1,18], in particular, the observation that the extinction
and origination rates are dependent on the relative number
of species [19].
The causes for equilibria in the diversity of marine life

have been discussed controversially. The equilibria might
be the result of an expanding diversity punctuated by
extinction events [20] or an artifact of the subsumption of
species in higher taxonomic groups [21]. Exponential
growth may display an equilibrium due to an overcom-
pensating correction of sampling bias [5]. In contrast,
recent studies strongly support the exponential hypothesis
for continental biodiversity [3–6], suggesting either that the
growth dynamics of continental diversity may crucially
differ from marine diversity [3,5] or that both grow
exponentially [2].
This demonstrates that arguments and empirical evi-

dence in this debate on equilibrium and expansion are
contradictory. While there is a large body of work on
logistic growth models, frameworks based on the assum-
ption of an expanding diversity are, to our knowledge,
absent.
We present a model supporting the expansion hypothesis

with few simple reasonable assumptions. The dynamics of
this model results in exponential growth that, however,
transiently slows down or is even interrupted for some time.
Specifically, while the average diversity grows exponen-
tially, the species dependency network may develop into an
unstable imbalanced state where many species depend on
few. In our model a transiently increased extinction rate
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compensates the speciation rate and causes a reorganization
of the network to the balanced state as being the attractor of
the system. The impact of this mechanism, which results in
periods of a stagnating diversity, is determined by the ratio
of the extinction to speciation probability. A comparison
with the fossil data suggests that marine and continental
taxa indeed have different ratios of the extinction to the
origination probability, which may explain the qualitative
difference of marine and continental biodiversity growth.
Model.—In our model, species can become extinct due to

abiotic causes (random exogenous extinctions) like a
changing environment, or are threatened by biotic causes
from extinction cascades in the dependency network
(endogenous extinctions). As a result, the size of extinction
events ranges from one to all species, which is in agreement
with the fossil data [19]. In contrast to ecological networks,
such as food webs, mutualistic networks, and host-
parasitoid networks [22–25], the dependency network does
not represent the interactions between individuals of differ-
ent species but whether the existence of one species
necessarily requires the presence of another species.
Two types of species are organized at certain dependency

levels l ≥ 1. Species at level l ¼ 1 are independent. In each
iteration, they become extinct, with probability ε, or
speciate to a new species, with probability μ. Hence, the
relative extinction probability

λ ¼ ε=μ ð1Þ

is the main parameter of the model.
In marine genera evidence has been reported for an age

selectivity implying an extinction risk that “drops off
rapidly among the youngest age cohorts and thereafter
shows little relationship to age” [26]. Here we model
speciation-extinction processes on long time scales.
Thus, firstly, we ignore the increased risk for the

youngest cohorts and consider a constant extinction prob-
ability, known as Van Valen’s law [27]. Secondly, species at
level l ≥ 2 are directly dependent on only one other
species [28].
In each step, these species give rise to a new species with

probability μ, or become extinct if the species they depend
on becomes extinct (Fig. 1). Thirdly, we ignore interspecies
competition, which may be a dominant force on short but
not on long time scales [29,30].
The dependencies are determined by the following rules.

Initially there are n1ð0Þ ¼ k independent species at the
lowest level l ¼ 1. If a species at level l ¼ 1 gives rise to a
new species, then the new species is placed with a
probability γ ≤ 0.5 at level l ¼ 2, thus being dependent,
and with the probability 1 − γ at level l ¼ 1, in this case
being independent of other species. If a species at a higher
level l ≥ 2 speciates, with the probability γ we place the
new species at level l − 1, with probability γ at level lþ 1,
and with probability 1 − 2γ at level l, the level of its

ancestor. When a species originates at level l ≥ 2, it
becomes dependent on a randomly chosen species located
at level l − 1.
Using a mean-field approximation for the dependency

network and the continuum limit for time t, levels l, and
occupation numbers nl, we obtain the reaction-diffusion
equation

dnl
dt

¼ γμ
d2nl
dl2

þ ðμ − εÞnl; with
dnl
dl

����
l¼1=2

¼ 0: ð2Þ

Since the model is defined only for l ≥ 1, the Neumann
boundary condition at l ¼ 1

2
ensures a zero net diffusion

between l ¼ 0 and l ¼ 1.
Regardless of the initial conditions, the occupation

numbers nl, the solution of Eq. (2), equilibrate to a half-
normal distribution

nlðtÞ ¼
2NðtÞffiffiffiffiffiffiffiffiffiffiffiffi
4πγμt

p exp

�
−
ðl − 1

2
Þ2

4γμt

�
; ð3Þ

see Fig. 2. The balanced state characterized by Eq. (3) is the
attractor of the dynamics, where the expectation value of
the extinction rate equals λN and the diversity grows
exponentially, NðtÞ≔P

lnl ∼ eðμ−εÞt.
The lifetime distribution for species within a given time

window of size T follows an exponential decay

LTðaÞ ¼ μe−μa; ð4Þ

where a is the species age. This result is in agreement with
the majority of the literature on marine species [31–34].
Episodic stagnation.—All species that are dependent on

a common species at level 1 constitute a dependency tree.

FIG. 1 (color online). Sketch of the model. The species in
purple (crosses) become extinct at level 1 by exogenous causes
and at higher levels due to their dependence on species at lower
levels. The species in green (gray) originate from existing species
(arrows).
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Given the survival of the root, the growth of tree i at level l
is governed by the simple differential equation

dsil
dt

¼ μsiðl−1Þ: ð5Þ

Given the root species of the tree appears at time t ¼ ti, we
have si1ðtÞ ¼ 1 for t ≥ ti, which enables us to calculate the
other occupation levels. Specifically, for a relative extinc-
tion probability λ≲ 1 close to unity, after a short transient
period, dependency trees necessarily grow much faster than
the (average) total diversity NðtÞ ∼ eðμ−εÞt as the solution of
Eq. (5) reads

silðtÞ ¼
1

ðl − 1Þ! ½μðt − tiÞ�l−1 for t ≥ ti: ð6Þ

A sum over all levels yields the size of the complete
dependency tree:

SiðtÞ ¼
X∞

l¼1

sil ¼
X∞

l¼0

½μðt − tiÞ�l
l!

¼ eμðt−tiÞ: ð7Þ

This means that the longer an independent species is spared
from extinction, the more species are dependent on it and
that the number S of species of a dependency tree increases
exponentially.
Since the growth of a dependency tree becomes sub-

stantially accelerated at higher levels [Eq. (6)], a single tree
may lead to a sudden imbalance of the entire dependency
network such that many species at high levels depend on
few independent species at level l ¼ 1 (Fig. 2). In particu-
lar, when the dependency network has not returned to the
balanced state, large extinction cascades are more frequent.
During such time periods the temporarily increased

extinction rate results in the suppression of the diversity
growth and the emergence of a plateau.
In Fig. 3 we have exemplified this behavior. An elevated

value of the diversity drives the system to an imbalanced
state, and peaks in the diversity are followed by relatively
stable plateaus. Specifically, the system undergoes a
transition back to a balanced state characterized by a
half-normal distribution as depicted for three selected time
points.
The probability of finding the system in an imbalanced

state depends not only on λ but also on the total diversity N.
To examine this by computer simulations, we characterize
an imbalanced state by the criterion arg maxlðnlÞ ≠ 1.
Thus, the system switches to an imbalanced state as soon
as the level l ¼ 1 ceases to be the most populated. Figure 4
(inset) shows how the probability Pim to find the depend-
ency network in such an imbalanced state depends on λ and
N. The reason for this emerging pattern is that imbalanced
states are caused by large dependency trees. This, however,
becomes unlikely for λ close to zero or a large total
diversity.
Extinction rate distribution.—By employment of single

event analysis [35–37], we calculate the size distribution of
extinction events, the number of species S involved in
single extinction cascades, which follows PðSÞ ¼ S−2 [14].
Many models have primarily aimed at reproducing this
power-law behavior [38–40]. However, first, the distribu-
tion is not directly comparable to an extinction distribution
obtained from the fossil data because the fossil data do not
resolve distinct extinction cascades. Second, the type of the
extinction distribution in the fossil data is controversial

FIG. 2. Sketch of a dependency network in the balanced state
(a) and the imbalanced state (b). Both networks consist of the
same number of species. The dashed line is close to a half-normal
distribution.

×
×

FIG. 3. Temporal development of a plateau. Single realization
for extinction probability λ ¼ 0.985 and n1ð0Þ ¼ 1000 initial
species. (a) The total diversity curve with three indicated points of
effectively constant diversity. (b) The diversity distribution nl at
the three indicated times in (a). While the total diversity stagnates,
the dependency network reorganizes from the imbalanced state
(Filled downward triangle) to a half-Gaussian distribution (Filled
upward triangle).
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[19,41,42]. Since the extinction rate depends on the size of
the considered time interval [43,44] and the total number of
species, its fluctuations are only properly characterized by
conditional probability measures. This suggests that a
discrimination be made between the extinction rate and
the size of an extinction event. For this reason we calculated
the extinction rate distribution in addition to the size
distribution of extinction events. Irrespective of details of
the extinction dynamics, we analytically demonstrate that
an exponentially increasing extinction rate (caused by an
exponentially growing biodiversity) necessarily leads to an
extinction rate distribution following a double power law
with an exponent of −1 for small rates and −2 for large
rates, respectively (see Fig. S2 in the Supplemental
Material [14]). Note that this prediction is exact.
Next we ask whether and how marine and continental

diversity are determined by different values of λ. We test
this (on the level of families [45]) by applying two different
methods to the data of Fossil Record 2 [46]. Our model
predicts the exponential growth of the diversity NðtÞ ∼ eαt,
α≔μ − ε, together with the exponential decay of the life-
time distribution, Eq. (4). Fits of these functions to the
fossil data yield the estimation of the parameters α and μ,
and thus an estimation of the relative extinction probability
λ ¼ ½μ − α�=μ, Eq. (1). Applying this method to the fossil
data (Fig. 5), we obtain λmar ¼ 0.69ð1Þ for the marine and
λcont ¼ 0.55ð2Þ for the continental biodiversity. In a second
approach, independent of predictions of our model, we
study the relation between percent extinction and percent
origination (Fig. 6). Bootstrapping suggests that the slope
for the marine data λmar is higher than the slope for the
continental data λcont (evidence ratio of 9:1), with the most
likely values λmar ¼ 0.68 and λcont ¼ 0.57.

Note that a conclusive comparison with the model is
impossible because it would require multiple realizations of
Earth’s history. Instead, we ask how the behavior of the
model qualitatively changes if λ jumps from λcont to λmar. As
illustrated in Fig. 3, the duration of the imbalanced state
correlates with the duration of the stagnation. Thus, we
infer from Fig. 4 that stagnations lasting longer than a

FIG. 4 (color online). Frequency of periods of imbalanced
states lasting longer than a duration d. Each realization was
stopped at the time step when the diversity reached 1000 species.
The inset shows the probability Pim for an imbalanced state,
based on 400 realizations.

FIG. 6. Percent extinction of total diversity against percent
origination for each stage. The solid line and the dashed line show
the most frequent slope for marine and continental data found by
the least-squares method in 106 bootstrap samples. The inset
shows the bootstrap distribution of the data. The gray areas are
the 2.5% quantiles. The maxima are at slopes 0.683 (marine) and
0.567 (continental).

FIG. 5. (a) Marine and continental diversity. The lines are
fitted to the data in the time range −200 to 0 Ma, yielding
α ¼ 0.0055ð2Þ Ma−1 for marine diversity (R ¼ 0.987,
P < 0.001) and α ¼ 0.0121ð3Þ Ma−1 for continental diversity
(R ¼ 0.990, P < 0.001). (b) Survival probability (cumulative
lifetime distribution) of marine and continental families. Best
fits are μ ¼ 0.017 86ð3Þ Ma−1 for marine data (R ¼ −0.998,
P < 0.001) and μ ¼ 0.0269ð1Þ Ma−1 for continental data
(R ¼ −0.990, P < 0.001).
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certain duration d occur for λmar ¼ 0.68 more than 2 times
as frequently as for λcont ¼ 0.57.
Discussion.—We have identified and studied a model

where species speciate randomly and become extinct due to
either endogenous or exogenous causes. Exogenous
impacts occur with a constant probability whereas endog-
enous impacts are caused by extinction avalanches propa-
gating through a system of interdependent species.
Assuming an expanding diversity, a long-term stagna-

tion, such as in the marine diversity, seems unlikely to be
the coincidental result of exponential growth superimposed
by random extinction events. Using exact methods, we
have demonstrated how a dependency network of species,
which on very large scales grows exponentially, may evolve
to an imbalanced state, which implies long-term stagnation.
Imbalanced states, however, are unstable and thus the
network necessarily reorganizes to a balanced state and
continues growing. This means that by taking the depend-
encies of species into account, long stagnations turn out to
be a typical behavior instead of a coincidental result; hence,
the imbalanced states are a plausible origin for long-term
stagnation of marine diversity.
The crucial parameter that determines this behavior is the

ratio of the extinction to speciation probability. Two
independent methods of analyzing the fossil data suggest
that this ratio is substantially different for marine and
continental diversity, which provides a potential explan-
ation for the qualitatively different growth of marine and
continental diversity.
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