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Superfluid spin transport—dissipationless transport of spin—is theoretically studied in a ferromagnetic
insulatorwith easy-plane anisotropy.We consider an open geometrywhere the spin current is injected into the
ferromagnet from one side by a metallic reservoir with a nonequilibrium spin accumulation and ejected into
another metallic reservoir located downstream. Spin transport is studied using a combination of magneto-
electric circuit theory, Landau-Lifshitz-Gilbert phenomenology, and microscopic linear-response theory. We
discuss how spin superfluidity can be probed in a magnetically mediated negative electron-drag experiment.

DOI: 10.1103/PhysRevLett.112.227201 PACS numbers: 75.76.+j, 75.70.Ak, 75.78.-n, 85.75.-d

Introduction.—An important goal in the field of spin-
tronics is to understand how spin, a quantum-mechanical unit
of magnetism, can be exploited for information transport,
data storage, and processing.While conventional spintronics
[1] relying solely on conduction electrons in metals and
semiconductors as carriers of spins still faces difficulties
associated with fast spin relaxation and significant Joule
heating, a promising alternative that combines conventional
spintronics with coherent spin-wave dynamics in magnetic
insulators has recently emerged [2]. Magnetic insulators can
also transport spin informationviamagnons [3], the quantum
of spin waves that also carries a unit of angular momentum.
This emerging field of magnon spintronics may alleviate the
obstacles present within the conventional schemes. The
possibility to investigate spin transport inmagnetic insulators
also opens a new venue for their experimental probes.
Integrating magnetic insulators into spintronic devices

raises interesting possibilities that stem from the bosonic
nature of the spin-carrying magnons. These magnons
can form a Bose-Einstein condensate, which has been
observed in some magnetic insulators including TlCuCl3
[4], Cs2CuCl4 [5], and Y3Fe5O12 (YIG) films [6]. A closely
related phenomenon is superfluidity, which is another
general property of bosonic quantum matter at low temper-
atures. In magnetic systems, this raises the possibility of
spin superfluidity, i.e., a dissipationless macroscopic trans-
port of spin [7]. In the past, the concept was used to explain
unusually fast spin relaxation in 3He-A [8] and invoked to
interpret the coherence of a nonuniformly precessing state
of 3He-B [9]. Spin superfluidity has also been studied in
Bose-condensed excitonic fluids [10]. While the absence of
strict conservation laws for spin rules out faithful analogy
to conventional mass superfluidity [11], it was demon-
strated that the analogy can still be useful if the violation of
conservation law is weak [10]. The generation of dissipa-
tionless spin current has received attention in the past in
metallic systems with noncollinear magnetic order [12],
p-doped semiconductors [13], and two-dimensional
electron systems with Rashba spin-orbit coupling [14].

In this Letter, we theoretically investigate how superfluid
spin transport can be realized and detected in magnetic-
insulator-based hybrid structures. The notion of superfluid
spin transport here is closely related to Ref. [12]. In this
Letter, we focus on the pertinent spin-transfer physics at the
ferromagnetjmetal interfaces (including thermally activated
spin currents), which is related to well-established and
independentlymeasurable quantities such as the spin-mixing
conductance and the spin Hall angle. We identify the
importance of global magnetic precession and the associated
relaxation of spin superfluid by Gilbert damping.
Specifically, we consider a ferromagnetic insulator with
easy-plane anisotropy attached on the two sides by metallic
reservoirs that act as the source and the drain for spin current
(see Fig. 1). In an open geometry, superfluid spin transport is
achieved by maintaining a spiral magnetic texture in the
ferromagnet, along with a self-consistent magnetic preces-
sion within the easy plane through a steady injection of
angular momentum at the source and its depletion by spin

(a)

(b)

FIG. 1 (color online). (a) Schematic of the hybrid structure for
realizing spin superfluidity. (b) A schematic plot showing the
spatial distribution of the condensate and thermal contributions to
the spin currents in the presence of Gilbert damping. See text for a
detailed discussion.
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pumping [15] at thedrain. The spin injection at the source and
its ejection at the drain have two contributions: coherent spin-
transfer torque [16] and thermally activated spin current
mediated by magnons. We establish the length scales
involved in the conversion of the thermal contribution into
a superflow, with its eventual relaxation due to Gilbert
damping. The resultant spin current can be probed in a
magnetically mediated negative electron-drag experiment,
similar to theproposal inRef. [17], facilitated by the spinHall
effect at the ferromagnetjnormal-metal contacts.
Superfluid spin transport.—Before pursuing a more

rigorous microscopic calculation, we first outline the essen-
tial semiclassical aspects of superfluid spin transport
(see Fig. 1). We start at zero temperature, where spin current
in the ferromagnet cannot be transported by magnons. A
ferromagnet of length L (occupying 0 < x < L) is sand-
wiched between two metallic reservoirs occupying −∞ <
x < 0 and L < x < ∞. We assume full translational
symmetry along the interface (yz) plane, axial symmetry
about the z axis, and take the easy plane in the xy plane.
The energy for the ferromagnet can be written as
HF ¼ R

d3x½Að∇nðxÞÞ2 þ KnzðxÞ2�=2, where A and K
parametrize the exchange stiffness and anisotropy, respec-
tively, and nðxÞ is the unit vector along the local spin density
sðxÞ.We parametrizen by the azimuthal angleφ and its z pro-
jection n¼ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1−n2z

p
cosφ;

ffiffiffiffiffiffiffiffiffiffiffiffi
1−n2z

p
sinφ;nzÞ and describe

its classical dynamics using the Landau-Lifshitz-Gilbert
(LLG) equation ð1þ αn×Þ _n ¼ −n × ∂sHF, where α is a
dimensionless damping constant that accounts for magnetic
losses in the ferromagnet bulk. In the strong-anisotropy and
long-wavelength limit (i.e., λ ≫

ffiffiffiffiffiffiffiffiffiffi
A=K

p
), the LLG equation

can be expanded to lowest order in nz and gradients of φ:

_φ ¼ Knz=sþ α _nz; _nz ¼ A∇2φ=s − α _φ; ð1Þ
where s≡ jsðxÞj is assumed to be fixed at its saturation
value. For α ¼ 0, Eqs. (1) are a magnetic analog of the
Josephson relations for superfluidity. The first term on the
right-hand side of the second equation defines the super-
current density (for the z projection of spin) as
JsðxÞ ¼ −A∇φðxÞ, and the spin waves can be shown to
have a soundlike linear spectrum as in a superfluid with the
speed v ¼ ffiffiffiffiffiffiffi

AK
p

=s. From Eqs. (1), we identify φ and snz as
canonically conjugate variables, with the long-wavelength
Hamiltonian given by HF ≈

R
d3x½Að∇φÞ2 þ Kn2z �=2.

Perturbing a monodomain ferromagnet by a nonequili-
brium z-axis spin accumulation in the left reservoir, the
magnet’s spins cant out of the plane and acquire a nonzero
nz, which, in turn, triggers a precession of the magnetic
order about the z axis by virtue of Eqs. (1). A steady-state
solution for nz and φ can be written as nzðx; tÞ≡ const ¼
nz and φðx; tÞ ¼ φðxÞ þ Ωt, where Ω ¼ Knz=s is the
precession frequency and φ00 ¼ ðαs=AÞΩ. According to
the translational symmetry along the interfaces, we are
considering solutions that are independent of ðy; zÞ. The
magnetization canting nz and the condensate spin-current

density flowing through the ferromagnet in the x direction
Js must be found according to the appropriate boundary
conditions at x ¼ 0; L. To that end, we employ the
magnetoelectric circuit theory [15], as follows.
The spin-current density injected into the ferromagnet

from the left reservoir is given by JsL ¼ ðℑg↑↓L þ
ℜg↑↓L n×Þð ~μs × nÞ=4π, where ℜg↑↓r and ℑg↑↓r are, respec-
tively, the real and imaginary parts of the spin-mixing
conductance g↑↓r ≡ℜg↑↓r þ iℑg↑↓r associated with the fer-
romagnetjreservoir-r interface. ~μs has two contributions:
~μs ≡ μs − ℏn × _n corresponding to spin-transfer torque and
spin pumping, respectively. Here, μs ¼ μsez is the non-
equilibrium spin accumulation in the left reservoir. We, thus,
have in our linearized theory: n × _n ≈Ωez and JsL ¼
g↑↓L ðμs − ℏΩÞ=4π for the z component of the spin current.
A similar analysis at the right interface gives the spin current
injected into the right reservoir: JsR ¼ g↑↓R ℏΩ=4π.With finite
damping, the amount of spin supercurrent dissipated in the
ferromagnet of length L is given by ΔJs ≡ JsL − JsR ¼
αsΩL. Imposing the continuity of spin current at the
boundaries according to the circuit theory, we then obtain

Ω¼μs
ℏ

g↑↓L
g↑↓L þg↑↓R þgα

; JsR¼
μs
4π

g↑↓L g↑↓R
g↑↓L þg↑↓R þgα

; ð2Þ

where gα ≡ 4παsL=ℏ. This is a central result of this work.
Note that the supercurrent decays algebraically as a function
of the ferromagnet’s length L in the presence of Gilbert
damping. For spin transport mediated solely by magnons
[17], the spin current is expected to decay exponentially over
the magnon diffusion length λsd ∼ v

ffiffiffiffiffiffiffi
ττ�

p
, τ (τ�) being the

decay (scattering) mean free times. The detection of appre-
ciable spin current for L ≫ λsd should be evidence of spin
superfluidity.
Microscopic theory.—In order to account for finite-

temperature corrections to the above results, we proceed
to develop a linear-response theory for a concrete micro-
scopic model. To that end, consider a ferromagnet with
spins arranged on a cubic lattice. With the xy easy plane, its
energy is ĤF ¼ −ðJ=2ÞPhijiSi · Sj þ ðD=2ÞPiS

2
zi, where

J > 0 is the exchange integral, D > 0 is the anisotropy
energy, and Si is the local spin in units of ℏ. Sites are
labeled by i; j and nearest-neighbor sites are denoted by hiji.
The low-energy behavior of the system is described by
replacing the spin Si on lattice site i with a continuum spin
density, SðxÞ ≈ Si=a3, that varies slowly in space. Owing to
the axial symmetry about the z axis, it is useful to
parametrize the spin density using two slowly varying
fields, its azimuthal angle φðxÞ and z component SzðxÞ.
Retaining terms up to quadratic order in small quantities,
the long-wavelength (quantum) Hamiltonian in the case of
a strong easy-plane anisotropy becomes

ĤF ≈
Z

d3x½Að∇φ̂Þ2 þ Kn̂2z �=2; ð3Þ
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where A ¼ JS2=a, K ¼ DS2=a3, and n̂zðxÞ ¼ a3ŜzðxÞ=S.
The fields φ̂ðxÞ and ŜzðxÞ are canonically conjugate
variables obeying ½φ̂ðxÞ; ŜzðyÞ� ¼ iδðx − yÞ. We have
dropped terms in Eq. (3) that are higher order in
Jða=λTÞ2=D ≪ 1, where λT is the thermal magnon wave-
length at temperature T. Using the long-wavelength mag-
non velocity v ¼ ffiffiffiffiffiffiffi

JD
p

aS=ℏ and the thermal wavelength
λT ∼ ℏv=kBT, the above inequality gives a condition on the
relevant temperature regime: T ≪ DS=kB ≡ TD. We gen-
eralize our results to the opposite, high-temperature regime
TD ≪ T (where magnons become circular) at a later point.
The metallic reservoirs on the left (r ¼ L) and right

(r ¼ R) are modeled as free electron gases with dispersion
ϵkkxr ¼ ℏ2ðjkj2 þ k2xÞ=2mr, where mr denotes the effective
electron masses for the two reservoirs, and k (kx) labels the
wave number parallel (normal) to the interface plane. The
nonequilibrium spin accumulation is induced in the left
reservoir, where the chemical potentials of the two spin
species are separated by μs. The spin-dependent distribu-
tion function for the left reservoir is, thus, given by
nFDðε − σμs=2Þ, where nFDðxÞ ¼ ½eβðx−μÞ þ 1�−1, with β ¼
ðkBTÞ−1 and chemical potential μ, and σ ¼ þð−Þ corre-
sponds to the up-spin (down-spin) electrons. Both spin
species in the right reservoir obey nFDðεÞ. We take the spin
quantization axis for the spin accumulation along the z axis.
(For the case of in-plane spin accumulation, see the
Supplemental Material [18].)
We suppose that the ferromagnet magnetization and

electron spin density at each interface couple via an sd-
type exchange interaction. For strong anisotropy, the
interaction Hamiltonian up to OðŜz=SÞ can be written as
V̂ ¼ P

rV̂r, with

V̂r ¼ ηr

Z
d2r

�
~Se−iφ̂ðxrÞ

2
ŝþr ðxrÞ þ H:c:þ ŜzðxrÞŝzrðxrÞ

�
;

ð4Þ
where ηr is the exchange coupling, ~S ¼ S=a3, and xL;R ¼
0; L. The reservoir spin densities are defined by ŝirðxÞ ¼
ψ̂†
σrðxÞτiσσ0 ψ̂σ0rðxÞ=2, where ψ̂ σrðxÞ is the annihilation

operator for a spin-σ electron in reservoir r at position
x, τi are the Pauli matrices, and ŝ�r ¼ ŝxr � iŝyr . Here, we
implicitly assume the dependence of the operators on r.
The spin accumulation in the left reservoir leads to an

injection of spin current in the form of a superfluid and a
thermally activated spin current mediated by magnons.
Within the healing length lh ∼ a

ffiffiffiffiffiffiffiffiffi
J=D

p
from the injection

site, the latter should transform into supercurrent [19], as
the individual magnons cannot carry spin angular momen-
tum along the z axis. The spin current can suffer relaxation
in the ferromagnet, which we account for using Gilbert
damping phenomenology. For spin waves, the damping rate
at T ≪ TD can be estimated as τ−1 ∼ αDS=ℏ, which
defines the magnon ballistic decay length l ¼ vτ. We
assume lh ≪ l, such that the magnon-mediated current is
converted into spin supercurrent without significant decay
within the healing length. This imposes a simple condition

on Gilbert damping: α ≪ 1, which is nearly always
satisfied in practice.
In order to separate the condensate and thermal con-

tributions to the injected spin current, we parametrize the
quantum fields in Eqs. (3) and (4) as a sum of the
deterministic classical component (the condensate) and
the fluctuating quantum component (magnon cloud):
φ̂ðxÞ ¼ φðx; tÞ þ δφ̂ðxÞ and ŜzðxÞ ¼ Szðx; tÞ þ δŜzðxÞ
[with a corresponding decomposition for n̂zðxÞ]. The
resultant coupling between the two components affects
spin transport both within the ferromagnet bulk and at the
interfaces. In the bulk, this coupling manifests only at
higher orders in the driving field μs [20]. At the interfaces,
however, the coupling contributes to spin current at linear
order in the driving field, as we show below.
To compute the thermal-cloud contribution to spin

current through the interface, we insert the above
parametrization for φ̂ðxÞ and ŜzðxÞ along with the
steady-state ansatz φðx; tÞ ¼ φðxÞ þΩt and Szðx; tÞ ¼
ℏΩ=Da3 into Eq. (4). The precession frequency Ω now
needs to be self-consistently determined in the presence of
the thermal cloud. Since the condensate-cloud coupling
only leads to nonlinear effects in the bulk (as argued
above), linear-response spin transport should be well
characterized by the condensate described by the above
steady-state solution for φ and Sz together with the
decoupled thermal cloud governed by the Hamiltonian
δĤF ¼ R

d3x½Að∇δφ̂Þ2 þ Kδn̂2z �=2.
We first evaluate the condensate contribution to the spin

current at each interface. In the absence of the fluctuations,
the relevant interaction Hamiltonian is V̂0 ¼

P
rV̂r0, with

V̂r0 ¼
Z

d2k
ð2πÞ2

dkx
2π

dk0xk0x
2π

ηr0kxk0xe
iΩtψ̂†

kkx↑r
ψ̂kk0x↓r þ H:c:;

ð5Þ
where ηr0kxk0x ¼ ηr ~Se−ifðxrÞϕr�

kx
ðxrÞϕr

k0x
ðxrÞ=2. The reservoir

electron operators were expanded as ψ̂σrðxÞ ¼R d2kdkx
ð2πÞ3 eik·rϕr

kx
ðxÞψ̂kkxσr, where ϕr

kx
ðxÞ are orthonormal

eigenfunctions in the transport direction for the semi-
infinite reservoir r. Here, we consider the weak-coupling
regime and compute the spin current to lowest nontrivial
order in ηr [21]. In Eq. (5), we dropped the z-component
exchange, since it does not contribute to the spin current
within the weak-coupling treatment. The operator for the
spin-current density flowing into each reservoir is

Ĵsr0 ¼
i
2A

Z
d2k
ð2πÞ2

dkx
2π

X
σ

½V̂r0; σψ̂
†
kkxσr

ψ̂kkxσr�; ð6Þ

where A is the interface cross-sectional area. From the
Kubo formula, we obtain Jsr0 ¼ −ði=ℏÞ R dt0θð−t0Þ×
h½Ĵsr0ð0Þ; V̂r0ðt0Þ�i, where θðtÞ is the Heaviside step func-
tion. To linear order in μs and Ω ∝ μs, we obtain
Jsr0 ¼ Gs

rℏΩr, where ΩL ¼ Ω − μs=ℏ and ΩR ¼ Ω. (In
order to consider spin current into the ferromagnet from
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the left reservoir, as in Fig. 1, we must flip the sign of ΩL.)
The conductances read Gs

r ¼ 2π
R∞
−∞ dενrðεÞ½−n0FDðεÞ�,

where n0FDðεÞ≡ ∂nFDðεÞ=∂ε and

νrðεÞ ¼
Z

d2k
ð2πÞ2

dkx
2π

dk0x
2π

jηr0kxk0x j2δðε − ϵkkxrÞδðε − ϵkk0xrÞ:

ð7Þ
For the thermal contribution, we expand the interaction

to linear order in the fluctuations δV̂ ¼ P
rδV̂r with

δV̂r¼
Z
fkg

X0

n

ηrnkxk0xe
−iΩtδφ̂k−k0nψ̂

†
kkx↑r

ψ̂k0k0x↓rþH:c:; ð8Þ

where ηrnkxk0x ¼ −iϕF
n ðxrÞηr0kxk0x and

R
fkg denotes integral

over momenta, k, k0, kx, and k0x, with the appropriate ð2πÞ−1
factors. Here, we have introduced orthonormal eigenfunc-
tions ϕF

n ðxÞ ¼
ffiffiffiffiffiffiffiffi
2=L

p
cosðqnxÞ (with non-negative integers

n ≥ 0 and qn ¼ nπ=L), which correspond to eigenstates
of a free particle in the domain 0 ≤ x ≤ L obeying
Neumann boundary conditions, ∂xϕ

F
n ð0Þ ¼ 0 ¼ ∂xϕ

F
n ðLÞ.

The spin-wave operators are expanded as δφ̂ðxÞ ¼R ðd2q=ð2πÞ2ÞP0
n e

iq·rϕF
n ðxÞδφ̂qn, with an analogous

expansion for δŜzðxÞ. We use prime on the summation
sign to indicate that it excludes uniform (i.e., condensate)
mode with q ¼ 0 and n ¼ 0. The magnon current-density
operator δĴsr is then given by the right-hand side of Eq. (6)
but with V̂r0 replaced by δV̂r. The steady-state magnon spin
current across the interface is then similarly obtained
through δJsr ¼ −ði=ℏÞ R dt0θð−t0Þh½δĴsrð0Þ; δV̂rðt0Þ�i.
The Hamiltonian for the fluctuations δĤF can be diagon-

alized using the ladder operators âqn and â†qn obeying

½âqn; â†q0n0 � ¼ ð2πÞ2δðq − q0Þδnn0 . We obtain δĤF ¼R ðd2q=ð2πÞ2ÞP0
n Eqnðâ†qnâqn þ 1=2Þ, where the magnon

spectrum is Eqn ¼ ℏv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj2 þ q2n

p
. In this basis, the phase

field reads δφ̂qn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Da3=2Eqn

q
ðâ†−qn þ âqnÞ. The linear-

ized thermal contribution to the injected spin-current density
reads δJsr ¼ δGs

rℏΩr, where the magnon conductances are
given by δGs

r ¼ 4π
R
∞
0 dεεδνrðεÞ½−n0BEðεÞ�, in terms of

δνrðεÞ¼
Z
fkg

X0

n

jηrnkxk0x j2Bk−k0nðεÞδðμ−εkkxrÞδðμ−εk0k0xrÞ;

ð9Þ

and the magnon spectral function BqnðεÞ ¼ ðDa3=2EqnÞ
δðε − EqnÞ. Here, n0BEðεÞ≡ ∂nBEðεÞ=∂ε, nBEðεÞ ¼
ðeβε − 1Þ−1, and we assumed that μ ≫ kBT. The total
injected spin-current density is then given by Jsr ¼ Gs

rℏΩr,
where Gs

r ¼ Gs
r þ δGs

r. This is a main result of our micro-
scopic calculation. Because of Gilbert damping in the
ferromagnetic bulk, the injected spin current JsL and the
collected spin current JsR are related via JsL − JsR ¼ ΔJs,
where ΔJs ¼ αsΩL is the condensate spin relaxation in the

bulk. Since the total injected spin current is fully transformed
into supercurrent in the bulk, we, thus, reproduce Eqs. (2)
with the substitution g↑↓r → 4πGs

r.
In order to quantify the thermal contribution to the spin

transfer with respect to the coherent contribution, we
evaluate the ratio R≡ δGs

r=Gs
r. In the low-temperature

regime considered thus far (i.e., T ≪ TD; Tc), we obtain
R ¼ ð ffiffiffi

S
p

=6Þ ffiffiffiffiffiffiffiffiffiffiffiffi
T=TD

p ðT=TcÞ3=2, where Tc ¼ JS2=kB and
TD ¼ DS=kB (see the Supplemental Material [18] for
details). Here, we see that the thermal contribution to
the spin transfer is very small. In the high-temperature
regime, TD ≪ T ≪ Tc, thermal magnons are no longer
strongly affected by the planar anisotropy and, thus, acquire
a circular character. In this case, the ratio of the thermal to
condensate spin currents becomes Rc ¼ ð ffiffiffi

S
p

=2π2ÞΓð5=
2Þζð3=2ÞðT=TcÞ3=2, where Γ is the gamma function, and ζ
is the Riemann zeta function (see the Supplemental
Material [18] for details). We see that the thermal con-
tribution remains small as long as T ≪ Tc.
Discussion.—The superfluid spin transport can be

detected using the setup shown in Fig. 1. Here, the
ferromagnet is sandwiched by identical metals with strong
spin-orbit coupling characterized by an effective spin Hall
angle θSH at the ferromagnetjmetal interfaces. Let JcR
denote the charge-current density produced via the inverse
spin Hall effect in the right metal given the applied charge-
current density JcL in the left metal, which define the
(negative) drag coefficient D≡ −JcR=JcL. The spin current
impinging on the static ferromagnet at the left interface is
given by JsSH ¼ ðℏ=2eÞθSHJcL. Using Onsager reciprocity,
the induced charge-current density reads JcR ¼
−ðθSHσ=dÞℏΩ=2e, where σ (d) are the conductivity (thick-
ness) of the right metal; here, we assume d ≳ λsf , where
λsf is the spin-flip length of the metal. In the absence of
magnetic losses and assuming θSH ≪ 1, JsR ¼ JsL ¼ JsSH=2,
which gives ℏΩ ¼ ð2π=g↑↓ÞJsSH resulting in D0 ¼
θ2SHσ=2gQg

↑↓d, where gQ ≡ 2e2=h. In the presence of
losses, the precession frequency is suppressed according
to Eq. (2) as ℏΩ ¼ ½4π=ð2g↑↓ þ gαÞ�JsSH, which results in
D ¼ D0=ð1þ L=LαÞ, where Lα ≡ ℏg↑↓=2παs. At finite
temperatures, the mixing conductance acquires a thermal
contribution, g↑↓jT≠0 ¼ ð1þRÞg↑↓jT¼0, which we para-
metrize by RðTÞ. We summarize these results in Fig. 2.
For a quantitative estimate, we consider a PtjYIGjPt

hybrid structure (which appears to be a promising combi-
nation because of strong spin-orbit coupling in Pt and low
Gilbert damping and weak magnetic anisotropy in YIG).
Using θSH ∼ 0.1 (measured for a platinumjpermalloy inter-
face [22]), σ ∼ 0.1ðμΩ × cmÞ−1 for Pt, d ≈ λsf ∼ 1 nm (spin-
flip length in Pt [22]), and g↑↓ ∼ 5 × 1018 m−2 for theYIGjPt
interfaces [23], we get D0 ∼ 0.1 [24]. Taking α ∼ 10−4 and
usingYIG spin density s=ℏ ∼ 1022 cm−3 [25], we get for the
crossover length Lα ∼ 1 μm. The large and long-ranged
negative drag constitute our key predictions.
Finally, we remark that breaking of the U(1) symmetry

within the easy plane of the ferromagnet is detrimental to
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the dc spin-carrying superfluid state studied here. Relevant
macroscopic manifestations of this symmetry breaking are
Gilbert damping, which has already been accounted for,
and magnetic anisotropy. In the presence of the latter, the
applied current must overcome a threshold in order to
establish the spin superfluid-carrying state over the length
of the ferromagnet. However, the applied current cannot
exceed an upper critical current, beyond which the induced
planar magnetic spiral state becomes unstable [12,19].
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FIG. 2 (color online). Negative drag coefficient normalized by
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↑↓d as a function of the length
of the ferromagnet L. (Inset) Normalized thermal correctionR ¼
δg↑↓ðTÞ=g↑↓jT¼0 to the spin-mixing conductance as a function of
the ambient temperature T.
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