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Improving the thermoelectric figure of merit zT is one of the greatest challenges in material science. The
recent discovery of topological insulators (TIs) offers new promise in this prospect. In this work, we
demonstrate theoretically that zT is strongly size dependent in TIs, and the size parameter can be tuned to
enhance zT to be significantly greater than 1. Furthermore, we show that the lifetime of the edge states in
TIs is strongly energy dependent, leading to large and anomalous Seebeck effects with an opposite sign to
the Hall effect. These striking properties make TIs a promising material for thermoelectric science and
technology.
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The search of high-performance thermoelectric (TE)
materials for efficient heat-electricity interconversion is a
long-sought goal of material science [1–3]. The recent
discovery of topological insulators (TIs) [4–6] sheds new
light on this pursuit. TIs are new quantum states of matter
characterized by an insulating bulk gap and gapless edge or
surface states, which are protected by time-reversal
symmetry [7–9]. TIs share similar material properties,
namely, heavy elements and narrow bulk gaps, with TE
materials. Consequently many currently known TIs (like
Bi2Te3, Sb2Te3, and BixSb1−x) are also excellent TE
materials [10–13]. The nontrivial TI edge and surface
states, which were unknown in the earlier research of
TE materials, might be advantageous in improving the
thermoelectric figure of merit zT.
TIs are interesting for thermoelectrics due to their unique

electronic structure. Distinct from conventional materials,
TIs support topologically protected boundary (surface or
edge) states together with bulk states, and the two types of
charge carriers exhibit distinct transport properties in
different dimensions. However, the approximate particle-
hole symmetry near the gapless Dirac point implies a
vanishing Seebeck coefficient, and previous works intro-
duced a truncation [14–16] or opened a gap [17] in the band
structure of boundary states so that a sizable Seebeck
coefficient can be recovered. In contrast to all previous
work, we utilize the intrinsic properties of the boundary
states, and show that the strong energy dependence of the
lifetime naturally leads to large and anomalous Seebeck
effects. Furthermore, we show that TE properties are
strongly size dependent in TIs, and this size parameter,
mostly ignored in previous works, can be tuned to greatly
enhance zT. In this work, we theoretically investigated TE
transport in TIs from ballistic to diffusive regions using the
Landauer transport approach. We find that zT of TIs

changes from nearly zero to significantly larger than 1
by varying the geometric size. The finding fundamentally
changes our common belief that zT is an intrinsic material
property. We also predict that the boundary states of TIs can
have the opposite signs for the Seebeck and Hall coef-
ficients. These striking predictions, if confirmed experi-
mentally, can open new directions for the science and
technology of thermoelectrics.
To understand TE properties of TIs, we will first discuss

the definition of zT that determines the TE efficiency of a
material. In a typical definition, zT is written as

zT ¼ σS2T
κ

; ð1Þ

where σ is the electrical conductivity, S is the Seebeck
coefficient, T is the absolute temperature, and the thermal
conductivity κ is the sum of contributions from electrons κe
and lattice vibrations κl [1]. The use of this definition
inexplicitly assumes that zT is an intrinsic material prop-
erty, independent of the geometric size. However, this basic
assumption does not always hold, as we will demonstrate
in TIs.
We present a general definition of zT that can describe the

general geometric size dependence. Using simple deriva-
tions based on thermodynamics [18], zT is described as

zT ¼ GS2T
K

; ð2Þ

where G is the electrical conductance and K ¼ Ke þ Kl is
the thermal conductance. According to Ohm’s scaling law in
the diffusive transport regime, G ¼ σA=L and Fourier’s
scaling lawK ¼ κA=L, whereA is the cross section area and
L is the length of a material. The geometry factor A=L
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cancels between G and K. Then if S is size independent, so
would be zT. In this sense, the two definitions, Eqs. (1) and
(2), are equivalent.
However, generally zT can be size dependent as caused

by two mechanisms: (i) Ohm’s scaling law and Fourier’s
scaling law fail; (ii) S depends on the geometric size. Both
mechanisms take effect in TIs. First, Ohm’s scaling law
does not apply to TIs, because boundary and bulk states
distribute in different physical dimensions. In addition, as
boundary states have mean free paths significantly longer
than bulk states, it is possible to see unusual length-
dependent transport behaviors, such as ballistic transport
of the boundary states and diffusive transport of the bulk
states. Second, the total S is described as [18]

S ¼ G1S1 þG2S2
G1 þG2

: ð3Þ

We use subscripts “1” and “2” to denote the contributions
of boundary and bulk states, respectively. The size depend-
ence of S always exists in TIs. For nondiffusive transport,
all individual TE quantities (including G1, G2, S1, and S2)
change with increasing L. Even if transport becomes
diffusive, varying A would modify the relative contribution
of boundary and bulk states, and thus change the total S.
Therefore, we expect a strong size dependence of zT in TIs.
A previous work [16], which makes a truncation in the band
structure of edge states, observed important changes in zT
when varying the inelastic scattering length of edge states
and the cross section of the transport system.
We apply the Landauer transport formalism to study TE

properties of TIs (see details in the Supplemental Material
[19]). We will focus on two-dimensional (2D) TIs. Similar
discussion can be applied for three-dimensional (3D) TIs,
which will be presented elsewhere. As a prominent feature
of 2D TIs, the edge states are gapless with bands dispersing
inside the bulk gap and helical with spin-momentum
locking, as schematically depicted in Fig. 1. Without losing
generality, we assume a linear dispersion for 1D edge states
and a parabolic dispersion for 2D bulk states: E1ðkÞ ¼
�ℏkv − Δ and E2ðkÞ ¼ ℏ2k2=ð2m�Þ, where “�” denotes
up (down) spins, ℏ is the reduced Planck constant, k is the

wave vector, v is the velocity of edge states, the bulk
conduction band minimum (CBM) is selected as the energy
reference, −Δ is the energy of the Dirac point, andm� is the
effective mass.
Transport calculations usually use the constant scattering

time approximation. The approximation does not rely on
any assumption about the possible dependence on doping
and temperature of the scattering time τ, and has been
successfully applied to study various TE materials [27]. If
assuming that the scattering rate 1=τ is proportional to the
density of states (DOS), like for electron-phonon scattering
[1], the feature that one-dimensional (1D) linear bands and
2D parabolic bands have constant DOS also suggests to use
constant τ. However, care has to be taken for TIs. There are
two important facts that must be considered: (i) when the
Fermi level EF is within the bulk gap, boundary states are
protected by the time-reversal symmetry against back-
scattering and thus have large τ; (ii) when EF is outside
the bulk gap, backscatterings become allowed for the
boundary states due to interactions with bulk states, which
decreases τ considerably.
As a generalization of the constant scattering time

approximation, we introduce a dual scattering time
(DST) model for TIs, as schematically depicted in
Fig. 1(a). In the DST model, we assume two different
constant scattering times, τ1 and τ2, for edge states with
energies within and outside the bulk gap, respectively. τ1 is
much greater than τ2. Meanwhile, we assume a constant
scattering time of τ20 for bulk states. τ20, similar as τ2, is
significantly smaller than τ1. For simplicity we take
τ2

0 ¼ τ2. Note the scattering-time ratio rτ ¼ τ1=τ2 is system
dependent. In the HgTe quantum well, a well-known 2D TI
system [8,9], rτ is on the order of 103 as deduced from
existing experiments [28,29]. In principle rτ can be
enhanced, for instance, by introducing nonmagnetic defects
or disorders into the system. References [14–16] truncate
the band structure of edge states, which can be mathemati-
cally viewed as the limiting case of rτ ¼ ∞.
Let us first focus on edge states. Herein L is scaled by the

inelastic mean free path of edge states λ1 ¼ vτ1, EF is
scaled by kBT, Δ is unimportant to calculations, and rτ is
the only remaining parameter. The length dependence of S1
(S of edge states) is visualized in Fig. 2(a) for a specified
Fermi level of EF ¼ 0 and varying rτ. S1 is nearly zero in
the ballistic limit (small L), gradually increases with L, and
finally becomes saturated in the diffusive limit (L on the
order of λ1). This basic trend is independent of the selection
of rτ, which only affects the results quantitatively.
Increasing rτ from 102 to 104 leads to a larger slope in
the S1-L curve and similar diffusive S1 of about 120 μV=K.
The results are consistent with previous ones [14–16]
which were calculated for the limiting case of rτ ¼ ∞
and L ¼ λ1. The optimization of EF further enhances S1.
As presented in Fig. 2(b) for rτ ¼ 103, the diffusive S1 can
be enhanced to 450 μV=K when choosing EF ∼ 5kBT.
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FIG. 1 (color online). (a) Schematic band structure and
(b) schematic drawing depicting helical edge states of 2D TIs.
τ1 and τ2 denote the scattering times within and outside the bulk
gap, respectively. Red (blue) colored lines represent edge states of
up (down) spins.
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As EF shifts upwards across the bulk CBM, G1 and Ke1
sharply decrease, and the power factor P1 ¼ G1S21 shows a
peaked shape centered at EF ∼ 1kBT. At the optimal EF of
P1, S1 is about 200 μV=K , which is comparable to the best
S of around 250 μV=K in bulk Bi2Te3 systems [1].
At this point, it is important to emphasize novel aspects

of the Seebeck effects of edge states. S is usually small for
gapless band structures, since both electrons and holes are
thermally excited and contribute opposite Seebeck coef-
ficients which cancel with each other. This explains the
vanishingly small S1 in the ballistic limit. However, the
extraordinarily large S1 obtained in the diffusive limit
seems illusive. Furthermore, there exists an anomaly in
the sign of S1. It is well known that the type of charge
carriers, n or p, is defined by the sign of S or the Hall
coefficient. As far as we know, previous work always found
the same sign in the two coefficients at least for a single
type of charge carriers. In contrast, we show a counterex-
ample here. For EF around the bulk CBM, edge states with
energies above the Dirac point are mostly unoccupied (see
band structures of realistic systems [6,30]). The corre-
sponding charge carriers are obviously n type in the sense
of Hall measurement, yet they contribute a p-type Seebeck
effect, as evidenced by the positive sign of S1.
To understand the anomalous sign of the Seebeck effects,

we first explain generally how the sign of S is defined. The
Seebeck effect represents the response of electrons to the
external temperature gradient. When increasing the temper-
ature, the occupation of electrons gets larger or smaller,
depending on whether the energy of the electrons is above
or below EF. Electrons above or below EF thus have
opposite contribution to S. The Landauer formula of S
brings in the contribution of states within around 5kBT of
EF [27]. When electrons above EF have dominating
contribution to the Seebeck effect, the sign of S is negative,
and vice versa. Now let us consider the case of edge states
for EF ¼ 0 (as referenced to the bulk CBM). The ballistic
transmission of edge states is energy independent [19].

Electrons below and above EF have the same contribution
to S, leading to a zero ballistic S1. As L increases, electrons
above the EF experience more scatterings than those below
the EF due to the edge-bulk interactions. As a result, S1
becomes nonzero and positive. We thus conclude that the
anomalous sign in S1 originates from the unique energy
dependence of the scattering time in TIs. An anomalous
sign in S1 may also appear when EF is around the bulk
valence band maximum (VBM).
A simple way to estimate S is to use the Sommerfield

expansion [31]

S ¼ −
π2k2BT
3e

∂ ln½T̄ ðEÞ�
∂E

�
�
�
�
E¼EF

; ð4Þ

which is obtained from the Landauer formula by assuming a
smooth transmission function T̄ ðEÞ and low T. T̄ ðEÞ is
determined by the distribution of conduction modes MðEÞ
and the mean free path λðEÞ [19]. The formula states that S is
determined by the slope of the transmission function at EF,
which suggests two mechanisms to enhance S: (i) an
increased energy dependence of MðEÞ, for instance by a
local increase in the density of states [32]; (ii) an increased
energy dependence of λðEÞ. The later mechanism, usually
thought to be unimportant, is ignored in most theoretical
studies. However, it plays a crucial role in TIs. The strong
energy dependence of λðEÞ [or τðEÞ], caused by edge-bulk
interactions, makes a dominating contribution to S1. This
explains the large magnitude of S1 obtained from the gapless
band structure of the boundary states. A previous study [17]
suggests to tune a hybridization gap in boundary states for
increasing S with decreasing mobility as a sacrifice. In
contrast, we show that edge states can contribute large S
by optimizing EF with no need for opening the band gap.
Thus edge states can simultaneously have large S and
superior mobility, advantageous for TE applications.
The improvement of zT requires suppressing thermal

conduction while keeping electrical conduction less
affected. Edge states are quite promising for this purpose,
since their low physical dimension and excellent transport
ability enable an effective decoupling between electrons
and phonons. Specifically, as the width of 2D TIs
decreases, transport of edge states remains unchanged
but the lattice thermal conductance lowers; when non-
magnetic perturbations (e.g., defects or disorders) are
introduced into the transport system, edge states are
topologically protected against scattering while phonons
are significantly scattered.
What is the maximum possible zT (zTmax) a 2D TI can

have? To answer this question, we consider the limiting
case that edge states contribute all electrical conductance
and lattice thermal conductance is negligible, which gives
the best zT. Edge states are treated in the diffusive transport
region for improving S and zT. Then the optimization of the
Fermi level gives zTmax as a function of rτ. As shown in

(b)(a)

FIG. 2 (color online). (a) The length dependence of S1 (S of
edge states) for EF ¼ 0 and varying scattering-time ratio rτ ¼
τ1=τ2 (see τ1 and τ2 in Fig. 1). (b) The Fermi level dependence
of TE quantities of edge states for diffusive transport and
rτ ¼ 103. S1, G1, P1, and Ke1 are normalized by 450 μV=K,
ð2e2=hÞðλ1=LÞ, ð2.5k2B=hÞðλ1=LÞ, and ð6.6k2BT=hÞðλ1=LÞ, re-
spectively, where λ1 is the inelastic mean free path of edge states
and L is the transport length.
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Fig. 3(a), zTmax increases monotonically with increasing rτ.
When varying rτ from 102 to 103, zTmax enhances from 4 to
11, shifting the optimized EF from 2.0kBT to 3.3kBT.
Importantly, zTmax is temperature independent and much
larger than 1.
It is interesting to see how zTmax changes when including

the contribution of lattice thermal conduction. In our
discussion, the width of the transport system (W) is selected
to be on the order of 2 times the localization width ξ of edge
states to minimize Kl and to avoid hybridization between
edge states [19]. Note that inelastic scatterings of edge
states can happen at finite temperatures, and the temper-
ature dependence of λ1 could be important. In TE calcu-
lations, the relevant quantities are the ratios rτ and λp=λ1
(λp is the phonon mean free path). The ratios can vary with
temperature for a given transport system. They can also be
tuned at a fixed temperature, for instance by the control
over disorders. To account for these effects, we calculate zT
for different ratio values. As presented in Fig. 3(b), an
increased λp=λ1 leads to a decreased zT, and such a trend
looks more obvious for larger rτ. For instance, when
changing λp=λ1 from 10−3 to 10−2, zT decreases from
4.1 to 3.5 for rτ ¼ 102 and from 10.4 to 6.5 for rτ ¼ 103.
As discussed above, a small λp=λ1 is in principle feasible in
2D TIs, for instance, by using nonmagnetic defects or
disorders. Our results thus indicate that zT can stay much
larger than 1 when Kl is included.
Finally we take the electrical conduction of bulk states

into account. We perform an example study on a realistic
2D TI material, fluorinated stanene as described in the
Supplemental Material [19], which has a nontrivial bulk
gap of 0.3 eV, suitable for room temperature operation [30].
Figure 4 presents the size dependence of zT and S, whose
values are maximized by optimizing EF. For small L and
large W, bulk states dominate TE transport, resulting in
small zT and negative S. When increasing L and decreasing
W, edge states becomes increasingly important, leading to a
bulk-edge crossover. Consequently, zT improves notice-
ably, and S has a sign change from positive to negative. The
contribution of edge states is maximized by choosing L on

the order of λ1 and W on the order of 2ξ (∼10 nm). At this
optimized geometry, a maximal zT of 7 is realized. In
practice, τðEÞ may not change sharply from τ1 to τ2 as
described by the DST model. We considered a smooth
decrease of τðEÞ from τ1 to τ2 in the form of exp½E=ðkBTÞ�.
The predicted zT slightly decreases but still remains
extremely large (about 6).
It has been theoretically predicted [33,34] and then

experimentally confirmed [35–39] that low-dimensional
and nanostructured materials can have zT much larger than
their bulk counterparts. However, in those previous works a
subtle control of material composition and structure is
required to get an overall balance between electrical
conduction and thermal conduction for optimizing zT.
Here we propose to use TIs for thermoelectrics, for which
the optimization of the geometric size can suppress thermal
conduction while keeping the electrical conduction little
affected. In comparison, our approach of improving zT is
simpler and more effective, which could greatly prompt the
development of TE science and technology.
In summary, we present the basic design principles to

optimize zT for TI materials. We show that zT is no longer
an intrinsic material property, but strongly depends on the
geometric size in TIs. This new tuning parameter can
dramatically increase zT of topological materials, including
quantum anomalous Hall insulators and topological crystal
insulators. In 2D TIs, we show that zT could be improved
to be significantly larger than 1 by optimizing the geometric
size. Moreover, we predict that the gapless edge states can
contribute large and anomalous Seebeck effects with an
opposite sign to the Hall effect. This striking prediction can
be used to experimentally test the theoretical framework
presented in this work.

We thank Yayu Wang, Biao Lian, Jing Wang, Hai-Jun
Zhang, and Xiaobin Chen for helpful discussions.
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