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Self-consistent dynamical approximations for strongly correlated fermion systems are particularly
successful in capturing the dynamical competition of local correlations. In these, the effect of spatially
extended degrees of freedom is usually only taken into account in a mean field fashion or as a secondary
effect. As a result, critical exponents associated with phase transitions have a mean field character. Here we
demonstrate that diagrammatic multiscale methods anchored around local approximations are indeed
capable of capturing the non-mean-field nature of the critical point of the lattice model encoded in a
nonvanishing anomalous dimension and of correctly describing the transition to mean-field-like behavior
as the number of spatial dimensions increases.
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Lattice models of correlated fermions appear in a wide
variety of physical systems, from condensed matter, where
they are used to study low-energy models of, e.g., transition
metals and intermetallic rare earth and actinide compounds,
to quantum chemistry and quantum chromodynamics.
Many of these systems exhibit a plethora of phases that
arise out of the dynamic competition of the underlying
degrees of freedom. Understanding the possible orders that
characterize these phases and the various ways they can
disappear is of primary interest in current many-body
physics.
The universal theory for the continuous melting of order

at finite temperature applies to the ‘scaling’ regime in the
immediate vicinity of the transition temperature Tc.
Relating it to microscopic models of lattice fermions
requires knowledge of the underlying universality class.
Even for classical systems, identifying this universality
class is difficult and relies, in general, on numerical
techniques. The main difficulty lies in the divergence of
scales as Tc is approached. Large systems paired with a
careful finite size analysis are needed and a finite size
ansatz and cluster updates or similar techniques are
required to overcome the concomitant critical slowing
down. For quantum systems, such analyses can be done
on bosonic and spin systems [1,2] where lattice
Monte Carlo and series expansion techniques allow access
to large enough systems to perform a reliable finite size
scaling.
The situation for correlated fermionic lattice systems

important to condensed matter is different. Analytical
solutions only exist for very special setups or weak and
strong coupling limits. Semianalytical infinite partial sum-
mation techniques [3] can be applied but are in general
uncontrolled. Approximate numerical approaches (among

them the dynamical mean field theory (DMFT) [4], which
does not include any nonlocal correlations), are known to
yield inaccurate critical behavior in two and three dimen-
sions [5,6]. Similarly, large-scale numerical efforts, e.g.,
diagonalization, lattice quantum Monte Carlo, or large
diagrammatic simulations have not yet reached the system
sizes necessary to perform a reliable finite size scaling
analysis at a critical point. For general systems and
parameter regimes, the exponential scaling of these tech-
niques (due to an exponential growth of the Hilbert space
or the fermionic sign problem) makes it prohibitively
expensive to directly simulate large systems.
Diagrammatic multiscale approaches [7–10] offer an

elegant potential remedy to this problem: the difficult
correlated part of the system is solved using a nonpertur-
bative many-body method, whereas easier, weakly corre-
lated parts of the problem are subsequently tackled in a
perturbative scheme. As perturbation theory generically
fails near criticality, it is a priori unclear if such a method
can accurately describe the behavior near critical points.
A first application to the critical properties of the anti-
ferromagnetic phase transition in the three-dimensional
Hubbard model in terms of the dynamical vertex approxi-
mation (DΓA) [7] has appeared in [11]. This calculation,
however, was not fully self-consistent at the two-particle
level and required an additional rescaling of the two-
particle vertex functions of DΓA introduced in [12,13],
resulting in a Gaussian description of the spatial fluctua-
tions characterized by anomalous dimension η ¼ 0 [11].
The three-dimensional Hubbard model in the infinite
interaction strength limit undergoes a continuous classical
(i.e., finite temperature) phase transition which is in the
universality class of the ϕ4 theory. The spatial correlations
at criticality thus are characterized by η ≈ 0.03 [14] close to
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the Gaussian limit η ¼ 0, which makes it difficult to test if
the correct non-mean-field spatial behavior of the interact-
ing system is captured faithfully.
In this Letter we present results for the phase diagram and

criticality of a simple fermionic model obtained from a
multiscale method that is able to describe non-Gaussian
critical behavior. Our multiscale method is the single-site
DMFT combined with a dual fermion (DF) approach [8], a
diagrammatic expansion in terms of the reducible DMFT
vertices. This scheme has previously been shown to have a
faster convergence than regular lattice perturbation theories,
as it has a small parameter in both the weak- and strong-
coupling regimes [15,16]. The starting point of the dual
fermion expansion is the nonperturbative DMFTexpression
for the lattice Green’s function [8] and it does not require an
a posteriori renormalization of vertex functions. We focus
on the half-filled Falicov-Kimball (FK) [17] model in two,
three and four dimensions. This model arises in various
contexts ranging from binary alloys to charge order in
intermediate-valence systems and is frequently used to study
phase transitions [5]. We choose this model because of
its continuous phase transition which at infinite interaction
strength is described by a ϕ4-theory with a Z2 order
parameter [18] which leads to strongly non-Gaussian spatial
fluctuations in two dimensions encoded in η ¼ 1=4, and
because of its numerical tractability at the DMFT level [5].
Our results show that non-Gaussian critical behavior in

the vicinity of a phase transition and critical exponents can
be extracted reliably from diagrammatic multiscale simu-
lations, thereby enabling the use of these methods in more
general and more demanding contexts.
Model and method.—We consider the FK model in d

dimensions with two types of electrons: heavy, fixed f
electrons characterized by a level energy εf and the
operators fð†Þ and light, mobile conduction electrons
described by the operators cð†Þ with the dispersion of the
hypercubic lattice εk ¼ −2t

P
d
j cos kj,

Ĥ ¼
X

k

εkc
†
kck þ

X

i

εff
†
i fi þ U

X

i

c†i cif
†
i fi; ð1Þ

where U is the interaction strength between c and f
electrons. Throughout this paper we will use t ¼ 1 as unit
of energy.
Within DMFT, the solution of the lattice problem is

approximated by a numerically tractable local impurity
problem with an effective self-consistently determined
hybridization function Δω. The action of the lattice
problem (1) in imaginary time is S ¼ P

Simp½c; c�; nf�−P
ωkðΔω − εkÞc�ωkcωk, where the impurity action Simp

reads

Simp½c; c�; nf� ¼
X

ω

ðΔω − iω − μÞc�ωcω

þ βðεf − μÞnf þUnf
X

ω

c�ωcω: ð2Þ

Here cω, c�ω are conduction electron fields at the impurity
site, nf ¼ 0, 1 is a classical variable representing the local
occupation number of f electrons and β ¼ T−1 is the
inverse temperature. The solution of the single impurity
problem (2) can be obtained analytically [19], and in the
infinite coordination number limit DMFT yields exact
expressions [20,21] for the Green’s and vertex functions.
We denote the Green’s function of the interacting impurity
problem as gω ¼ −hcωc�ωi. The hybridization function Δω

is set by taking gω equal to the local part of the lattice
Green’s function gω ¼ P

kG
DMFT
ωk . In the FK model, the

coupling of the itinerant c electrons to the classical f
electrons leads to a separation of the static and dynamic
response functions [22], and to a simplified two-frequency
(rather than three-frequency) dependence of the two-
particle Green’s function χωω0 ¼ hcωc�ωcω0c�ω0 i. Moreover,
the higher order (three-, four-particle …) impurity vertex
functions vanish in the particle-hole symmetric regime of
the model (see derivation in Supplemental Material [23]).
In the finite dimensional case considered here, DMFT is an
approximation and yields a set of mean field exponents for
the charge-ordering transition [5].
We then apply our multiscale dual fermion method

to obtain nonlocal correlations. Following Ref. [8] we
introduce a set of dual fermions ξ, ξ� and integrate out the
original degrees of freedom to rewrite the action of the
original lattice problem (1) as

~S ¼ −
X

ωk

ξ�ωk½ ~G0
ωk�−1ξωk −

1

2

X

ωω0j

γωω0ξ�ωiξωiξ
�
ω0iξω0i: ð3Þ

Here γωω0 ¼ g−2ω ½χωω0 − gωgω0 �g−2ω0 is the reducible two-
particle vertex of the DMFT impurity problem (2) and
~G0
ωk ¼ GDMFT

ωk − gω denotes the bare dual fermion Green’s
function.
The dual fermion self-energy is constructed from the

reducible DMFT impurity vertex functions. The summation
of all of vertex diagrams generates the exact lattice solution
but cannot be performed in practice. At this point we
therefore resort to a ladder approximation and express the
connected part of the dual two-particle Green’s function as

~Γωω0 ðqÞ ¼ γωω0 −
X

ω00
γωω00

X

k

~Gω00k ~Gω00kþq
~Γω00ω0 ðqÞ: ð4Þ

Its zero-order approximation ( ~G ¼ ~G0) results in DMFT
expressions for both the Green’s function and the charge
susceptibility of the system (see Ref. [24] and
Supplemental Material [23]). The dual fermion self-energy
~Σωk is obtained from ~Γωω0 ðqÞ via

~Σωk ¼
X

q

~ΓωωðqÞ ~Gωkþq: ð5Þ

Equations (4) and (5) are solved self-consistently. This
allows for non-mean-field critical exponents, whereas a
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finite subset of the diagrams does change Tc but only
results in mean field exponents (see Supplemental Material
[23] and Ref. [25]). The full lattice Green’s function
Gωk and the lattice two-particle vertex Γωω0kk0 ðqÞ can be
obtained from ~Gωk and ~ΓωωðqÞ via Gωk¼ðΔω−εkÞ−1þ
g−2ω ðΔω−εkÞ−2 ~Gωk and Γωω0kk0 ðqÞ ¼ LωkLωkþqLω0k0

Lω0k0þq
~Γωω0 ðqÞ, where Lωk ¼ ½1 − ~Σωkgω�−1. The static

lattice c-electron charge susceptibility becomes χccðqÞ ¼
−T

P
ωkGωkGωkþq þ T

P
ωω0

P
kk0 GωkGωkþqΓωω0kk0 ðqÞ

Gω0k0Gω0k0þq.
Results.— We present the phase diagram of the half-

filled FK model on two-dimensional and three-dimensional
cubic lattices obtained in the isotropic phase of the model in
Fig. 1. Shown is our estimate for the c-electron density of
states at Fermi energy (ω ¼ 0) obtained from the DF
calculation as Aðω ¼ 0Þ ≈ −βGlocðβ=2Þ=π. We find three
different phases: below Tc (indicated by the solid line) a
checkerboard charge-ordered state exists for all values of
U, above Tc the isotropic metallic non-Fermi liquid state
[26] for low U, and a disordered Mott-like insulating state
for large U are separated by a crossover with a character-
istic energy scale U� indicated by a dashed line in Fig. 1.
At U > U� a gap in the spectrum is present for all
temperatures and the kinetic energy of the conduction
electrons is small compared to the potential energy and
the phase transition is of second order. At U < U�,
Monte Carlo simulations on finite-size clusters [27,28]
indicate first-order coexistence, whereas DMFT finds an
unconventional continuous phase transition [29,30].
In Figs. 2 and 3 we analyze the critical behavior of the

continuous transition at U > U�. In panel 2(a) we show the
inverse of the static checkerboard q ¼ ðπ; π; � � �Þ c-electron
susceptibility χcc on approach to the charge-ordering phase
transition in two, three, and four dimensions as obtained
from our DF calculations. The divergence of χcc indicates a
phase transition to the checkerboard charge-ordered phase,
which occurs at half-filling. We find power law behavior
for about two decades in T − Tc and χ−1cc , allowing us to fit

the critical exponent γ with good confidence. Panel 2(b)
shows the evolution of γ as a function of U along the
second order line. We observe a significant dimensionality
dependence of γ and an agreement with the Ising univer-
sality class (of the respective dimension) within error bars
for the entire range U > U�. Our error bars reflect the least
square fitting uncertainty for the exponents. In panel 2(c)
we show the critical temperature of the phase transition in
different dimensions as obtained by Monte Carlo simu-
lations [27,28] (obtained on finite-size clusters), DMFTand
dual fermions. Nonlocal correlations in the system lead to a
decrease of the critical temperature from the overestimated
DMFT values towards the Monte Carlo values. The DF
improves on the DMFT for all interaction values studied.
The difference between the dual fermion Tc and the true
transition temperature is determined by all the diagrams not
included in the DF approximation.
In Fig. 3(a) we show the spatial dependence of χcc along

the x (open black symbols) and the xy (solid blue symbols)

FIG. 1 (color online). Estimate for the Fermi energy density of
states Að0Þ ≈ −βGlocðβ=2Þ=π of c electrons in two dimensions,
(inset: three dimensions) as a function of U and T at half-filling.
Solid line TcðUÞ indicates a phase transition to the checkerboard
ordered phase (CDW). Above Tc the model shows a crossover
from a metallic phase to the isotropic insulator.
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directions. The spatial modulation of χcc shows checker-
board ordering, indicated by a change of sign of suscep-
tibility in x-direction. The data are consistent with an
exponential decay corresponding to a Lorentzian in
momentum space (lower panel), so that we can extract a
correlation length ξ. Figure 3(b) shows the critical behavior
of ξ as a function of T at U ¼ 14, which in agreement
with Fig. 2(b) shows a strong dimensionality dependence.
The corresponding critical exponent ν, plotted in Fig. 3(c)
as a function of U, shows reasonable agreement with the
Ising exponents for the entire range of U.
As all critical properties are obtained from the effective

action and its derivatives, scaling relations are expected to
hold. From γ and ν one therefore can extract the value of
η ¼ 2 − γ=ν (0.25 in two dimensions, 0.03 in three dimen-
sions), highlighting the correct description of non-Gaussian
spatial fluctuations at the phase transition. This result is
more general: in the Hubbard model, vertex functions will
acquire additional dynamic components, which are absent
in the Falicov-Kimball model. However, due to the decou-
pling of statics and dynamics at a classical phase transition
[31], critical exponents only depend on the lattice dimen-
sion and the order parameter symmetry and are insensitive
to the dynamics of the underlying microscopic model [32].
Correct critical exponents for the Hubbard model may be
obtained from an analogous calculation using only static
vertex components. In contrast, nonuniversal quantities
(e.g., Tc) will depend on dynamic vertex parts and require a
more extensive analysis.
We now turn to a discussion of the electronic properties

that underlie this behavior. Figure 4(a) shows the local fc
occupancy nfc ¼ hc†cf†filoc in two dimensions and our
estimate for the local density of states as a function of U
near the crossover between metallic and insulating states at
T > Tc. DMFT calculations [30] showed continuous cross-
over behavior and no hysteresis for both quantities.
Nonlocal correlations do not change this behavior quali-
tatively, but we find that the crossover scale U� is slightly
smaller than in DMFT. We also find, consistent with
expectation, that deviations from the DMFT results are
largest near the point where the curve is closest to the
phase transition to the ordered state and critical phenomena
become important. Away from this region, DF and DMFT
results are remarkably similar and nonlocal correlations
appear less important.
The momentum-resolved spectral function estimates

shown in panels (b) and (c) of Fig. 4 highlight this further.
DF (main panels) and DMFT (insets) DOS at the Fermi
energy are shown as a function of momentum for U ¼ 4
and U ¼ 1. The temperature is chosen to be just above Tc
for U ¼ 4. The weak correlation regime deep within the
phase at U ¼ 1 is well captured by the momentum-
independent DMFT self energy. Near Tc at U ¼ 4, the
deviations between the DF and DMFT solutions become
substantial. DMFT shows a comparatively large and
k-independent spectral function in a large area around

the noninteracting Fermi surface. DF, in contrast, exhibits a
much narrower and nontrivial momentum dependent spec-
tral function that suppresses the density of states near the
(π, 0) and (0, π) points but not near the zone diagonal (π=2,
π=2) points. This behavior is expected because a diver-
gence in the two-particle propagator feeds back into the
single-particle Green’s function through Eq. (5). The effect
is reminiscent of the momentum-selective pseudogap
regime in the Hubbard model, where both short ranged
correlations contained in, e.g., cluster DMFT [33] or long
ranged correlations contained in DF and DΓA calculations
[13,15,16] result in qualitatively similar behavior.
The charge order phase transition in this model persists

away from half filling [34]. Figure 5(a) shows Tc as a
function of c-electron chemical potential for three different
f-electron concentrations. We find that doping suppresses
Tc both in DMFT (open symbols) and DF (filled symbols),
with the DF Tc always below DMFT. Panel (b) shows
the evolution of the c-electron density as a function of
c-electron chemical potential at Tc. The large difference
between DF and DMFT results is a consequence of
correlation effects absent in DMFT.

FIG. 4 (color online). (a) fc occupancy nfc (solid lines) and
local density of states (DOS) estimate at the Fermi energy,
Aðω ¼ 0Þ≈ − βGlocðβ=2Þ=π, (dashed lines) in two dimensions as
a function of U in DMFT and DF, both showing a smooth
crossover from metal to Mott-like insulator. Bottom: Momentum-
resolved −βGkðβ=2Þ for U ¼ 4.0 (b) and U ¼ 1.0 (c), as
obtained in DF (main panel) and DMFT (insets). Black dots
indicate the mesh points on which DF and DMFT are evaluated.
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Summary.—In conclusion, we have applied the “dual
fermion” diagrammatic multiscale method to an interacting
quantum many-body system. We demonstrated that our
dual fermion ladder approximation recovers the exact
interacting critical behavior in d ¼ 2, 3, 4 dimensions
and that diagrammatic multiscale methods can yield accu-
rate results for the criticality of interacting fermionic lattice
models. We also showed that the method provides valid
results away from particle-hole symmetry. It may therefore
be able to provide accurate predictions for more compli-
cated (and in particular frustrated) models [35], where no
reliable theoretical tools are available so far, as well as for
transport properties near and far from equilibrium [36,37].
It also motivates the use of multiscale methods to gain
insight into critical phenomena that are far less clear, such
as the superconducting transition in the cuprates [38] and
the quantum melting of magnetism in certain heavy
fermion compounds [39], where many continuous quantum
phase transitions appear to be beyond the traditional
classification scheme [40,41].
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