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We study the structural features and underlying principles of multidislocation ground states of a
crystalline spherical cap. In the continuum limit where the ratio of crystal size to lattice spacing W=a
diverges, dislocations proliferate and ground states approach a characteristic sequence of structures
composed of radial grain boundaries (“neutral scars”), extending radially from the boundary and
terminating in the bulk. Employing a combination of numerical simulations and asymptotic analysis of
continuum elasticity theory, we prove that an energetic hierarchy gives rise to a structural hierarchy,
whereby dislocation number and scar number diverge as a=W → 0 while scar length and dislocation
number per scar become independent of lattice spacing. We characterize a secondary transition occurring as
scar length grows, where the n-fold scar symmetry is broken and ground states are characterized by
polydisperse, forked-scar morphologies.
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Understanding the ground-state order of curved, 2D
crystals remains an outstanding challenge with far ranging
implications, from the assembly of viral capsids [1,2] and
multicomponent lipid membranes [3,4] to the structure and
stability of particle coated droplets [5]. The planar, sixfold,
equitriangular packing favored by isotropic interactions is
incompatible with Gaussian curvature and as a conse-
quence, topological defects are necessary features of
ground-state order in curved crystals [6,7]. The importance
of disclinations—points of localized five or sevenfold
symmetry—has long been recognized for crystals on
fixed-topology surfaces, like the well-known Thomson
problem [8,9]. More recently, experimental [5,10], compu-
tational [11,12], and theoretical [13–15] studies have begun
to recognize the importance of a related class of defects,
dislocations—“neutral” five-seven dipoles—in the mini-
mal-energy states of curved crystals, both with and without
disclinations. Unlike disclinations, the number of disloca-
tions, Nd, in curved-crystal ground states grows arbitrarily
large in the continuum limit—where W=a, the ratio of
crystal size to lattice spacing diverges—resulting in multi-
dislocation chains, known as “scars” [5,13], that span large
portions of the crystal. While heuristic arguments have
been proposed to explain the scaling of the total number of
dislocations with surface curvature [10,13], to date there is
little understanding of precisely how defects are arranged in
multidislocation ground states and what mechanical, geo-
metric, and microscopic parameters govern these emergent
structures.
In this Letter, we study a continuum elasticity model of

crystalline caps bound to a spherical substrate to illuminate
the emergent structure of mutlidislocation ground states in

the continuum limit. A combination of numerical and
asymptotic analysis prove that as Nd → ∞, the arrange-
ment approaches a characteristic pattern: ns radially ori-
ented scars extending from the crystal edge terminating in
the bulk (Fig. 1). An energetic hierarchy underlies the
structural hierarchy characterizing these states, which was
recently argued [16] to parallel mechanisms of elastic
pattern formation in wrinkled ultrathin films [17,18],
whereby certain features of the defect pattern (Nd and
scar length, ls) are encoded in the mechanics of the
asymptotic limit of vanishing lattice spacing, while other

FIG. 1 (color online). Mesh reconstruction of an eight-scar
ground state of a crystalline cap bound to sphere of radius R,
where five-seven dislocation “dipoles” are shown as red (light)
and blue (dark) vertices.
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features (optimal scar number ns) are governed by imper-
fect relaxation of geometric stresses by discrete disloca-
tions. Here, we demonstrate that optimal symmetry of
n-fold defect patterns is selected by a competition between
the distinct energetics associated with different parts of the
scars, their respective lengths and ends. Remarkably, this
reveals that the asymptotic approach to the continuum limit
is characterized by the divergence of both the number of
dislocations and scars, such that Nd=ns, the number of
dislocations per scar, approaches a universal constant,
independent of lattice spacing and defect core energy.
The influence of curvature on the structure of 2Dcrystals is

complicated by several competing modes of relaxation
triggered by geometrically induced stresses. These include
i) “elastic” modes of out of plane shape deformation
facilitated by patterns of wrinkles [16], crumples [18], and
blisters [19], ii) shape instabilities of the free boundary of the
solid domain [3,20,21], and iii) “plastic” reorganization of
lattice packing facilitated by topologically “charged” or
“neutral” arrays of defects [5,10,13]. To date, quantitative
comparison of the relative efficacy of each mode to relax the
cost of confinement has been hindered by the unknown
structure and energetics of optimal defect patterns for
Nd ≫ 1. Here, to illuminate the underlying principles and
quantitative accuracy emerging from the singular limit of
“infinitely defective” crystals, we focus on the limiting
parameter regime where the first two response types are
suppressed by sufficiently large costs for substrate deforma-
tion or detachment [16] and boundary creation (e.g., large
line tension) [20].
We study a circular 2D crystalline “cap” of radius W

bound to a rigid spherical substrate of radius R, subject to
an adhesive, radial tension T at its boundary that favors
spreading of the cap over the substrate. Our analysis is
based on the continuum elasticity theory of 2D crystals,
where the total energy is

E ¼ 1

2

Z
dAσijuij − TΔA: ð1Þ

For a weakly curved crystal, elastic strain derives from
in-plane displacement uðxÞ (components in xy plane) and
out-of-plane deflection hðxÞ, with uij ¼ ð∂iuj þ ∂juiþ∂ih∂jhÞ=2, while the stress response of a hexagonal crystal
is characterize by Lamé constants, λ and μ, σij ¼ λδijukkþ
2μuij. The second term in Eq. (1) represents the adhesive
work where ΔA ¼ W

R
dθurðr ¼ WÞ is the area change of

the sheet, and ðr; θÞ are polar coordinates. Dislocations are
singular points, xα, around which displacements increase (or
decrease) by Burgers vectorb, corresponding to a partial row
of lattice sites of width jbj≃ a added or removed from
crystal, terminating at xα. For a curved crystal possessing
dislocations [22], stress is governed by two relations, in-plane
force balance, ∂iσij ¼ 0, and the compatibility equation,

Y−1∇2⊥σii ¼ −KG −∇⊥ × bðxÞ; ð2Þ

where Y ¼ 4μðλþ μÞ=ðλþ 2μÞ is the 2D Young’s
modulus, KG ¼ R−2 is the Gaussian curvature, and
bðxÞ ¼ P

αbαδðx − xαÞ is the areal Burgers density. Note
that in using Eq. (2), we assume the small-slope limit, where
j∇⊥hj ≈W=R ≪ 1 and the cap covers a small (but finite)
sphere fraction. In particular,we study coverages smaller than
ðW=RÞc ¼

ffiffiffiffiffiffiffiffi
2=3

p ≃ 0.82 beyond which small-slope theory
is unstable to excess fivefold disclinations [23,24].
Stress in defect-free state, σ0ij, derives from geometric

strains imposed by curvature and adhesive forces at the
boundary, which require σrrðr ¼ WÞ ¼ T,

σ0rr ¼
Y

16R2
ðW2 − r2Þ þ T;

σ0θθ ¼
Y

16R2
ðW2 − 3r2Þ þ T: ð3Þ

Unlike the radial direction which is always tensile, in the
defect-free state for sufficiently small T, the hoop direction
becomes compressive (σ0θθ < 0) at large radii, r > L0 ¼
W=

ffiffiffi
3

p ð1þ 2T=T�Þ1=2, where T� ¼ Y=8ðW=RÞ2 is a criti-
cal tension above which the compressed zone vanishes.
Dislocations corresponding to the removal of a row
extending from the defect to the boundary (i.e., b ¼ bθ̂)
relax compression at the edge and lower the elastic energy,
provided their cost is sufficiently low. We characterize
the susceptibility to dislocations (dubbed the “defectivity”
of the crystal [16]) in terms of the ratio of dislocation
self-energy, proportional to Yb2, to elastic energy of the
defect-free sheet, proportional to YW2ðW=RÞ4,

ϵ ¼ ðb=WÞ2ðW=RÞ−4; ð4Þ
which vanishes in the continuum limit b=W → 0, indicat-
ing the instability of the crystal to dislocations when
T < T�. We study the structure and energy of multi-
dislocation configurations in this regime by superposing
σ0ij with stresses generated by multiple dislocations
(b aligned to hoop direction) [25]. The self-energy of
dislocations, dislocation interaction energy, and the energy
associated with relaxing geometrically induced compres-
sion derive from the free-boundary condition Greens
functions of single dislocations [24,26] and Eq. (1)
(see Supplemental Material [27]). For given values of
tension, curvature and b=W, we relax the total energy
by numerically adjusting defect position and number in the
crystal. For fixed Nd, the energy is minimized by steepest
descent starting from ∼104 random initial defect configu-
rations. The minimal energy multidislocation pattern is
selected from this ensemble of “simulated quenches”.
As T is reduced below T�, a characteristic multidislo-

cation pattern emerges: ns evenly spaced and symmetric
scars extending a distance ls from the edge into the cap.
For conditions shown in Fig. 1 (W ¼ 0.3R, b ¼ 0.013W,
T ¼ 0.1T�), we find a ns ¼ 8 scars of average length
ls ¼ 0.45W, composed of Nd ¼ 27 dislocations. While
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optimal size and number of scars, as well as total defect
number, change with both macroscopic (cap size, tension)
and microscopic (Burgers vector) parameters, all simulated
ground states show spontaneous emergence of n-fold
symmetry at the onset of scar stability, T ≲ T�.
We now demonstrate how the features of this character-

istic dislocation pattern are governed by the distribution of
stress approached in the asymptotic limit b=W → 0. The
ultimate stress σdij of the defect-riddled state must be
significantly remodeled by dislocations from the defect
free stress σ0ij, which is unstable to defects. The stability
of multidislocation state can be understood in terms of
the Peach-Kohler force [28] acting on dislocations,
fi ¼ bϵijσdjθ, which implies that dislocations climbing from
the boundary continue to lower the energy until defects are
localized to regions where σdrθ ¼ σdθθ ¼ 0. The stable stress
pattern derives from the continuum dislocation density
bcðxÞ ¼ bρðrÞθ̂ that approximates defect distribution in the
Nd → ∞, b → 0 limit, and mechanical constraints imposed
by a zone of vanishing compression [16]. The axisymmetry
of the areal density ρðrÞ implies vanishing of shear stress,
while the collapse of hoop stress is governed by the
solution of Eq. (2) in two radial zones: a defect-free
(ρ ¼ 0) axisymmetric inner region for r < Ld, where the
stress is identical to Eq. (3) up to an overall additive
constant; and an outer scarred zone (ρ ≠ 0) for r ≥ Ld,
where σdθθ ¼ 0 as required by defect stability and σdrr ¼
TW=r as required by force balance and boundary con-
ditions. Continuity of radial and hoop components at the
edge of scarred zone require an defect-free inner zone of
radius

Ld ¼ W − ls ¼ WðT=T�Þ1=3; ð5Þ

which predicts that scars extend beyond the original com-
pressed zone of the defect free state since Ld < L0. Like the
“far-from-threshold” analysis of wrinkling of ultrathin
elastic sheets [16,18,29], the asymptotic stress pattern
achieved in a defect-riddled cap in the b=W → 0 limit is

independent of “microscopic” features of the pattern,
including b and the scar number, ns.
Given this stable, compression-free pattern of stress, the

dislocation distribution is determined by integrating the
compatibility relation—matching the discontinuity in ∂rσ

d
ii

at r ¼ Ld with the dislocation density at the edge of the
scarred zone—yielding

ρðrÞ ¼ ϵ−1=2

8W2

�
4
r
W

−
T
T�

�
W
r

�
2
�
: ð6Þ

Integrating ρðrÞ over the scarred zone Ld ≥ r ≥ W, the total
dislocation number becomes,

Nd ¼
πϵ−1=2

12
½4ð1 − T=T�Þ þ ðT=T�Þ lnðT=T�Þ�: ð7Þ

At small T, Nd ∼ ϵ−1=2 is consistent with the balance
of the total edge length removed by dislocations Ndb
and shortening of latitudes at the outer boundary imposed
by spherical geometry ∼WðW=RÞ2, while as T=T� → 1,
boundary forces eliminate this compression; hence,
the dislocation number vanishes in the limit Nd∼
ϵ−1=2ðT� − TÞ.
Notably, the principle of stress collapse in the scarred

zone illustrated here is equivalent to the previously invoked
notion of “perfect screening” of Gaussian curvature by
dislocations which, for T ¼ 0, achieves σij ¼ 0 throughout
the sheet [10,13]. Comparison to numerical simulations
demonstrates that the value of the “perfect screening”
distribution, and its generalization to nonzero boundary
forces, is far more than heuristic, describing certain features
of multidislocation states (length of scars and defect
number) quantitatively, even for finite, but large values
of ϵ−1 ∼ ðW=bÞ2. In Figs. 2(a)–2(b), we compare predic-
tions for ls and Nd to “free dislocation” simulations, as
well as to a much larger class of numerically optimized,
fixed n-fold symmetry radial scar patterns, whose fewer
degrees of freedom (radial positions of each dislocation
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FIG. 2 (color online). The scaled dislocation number ϵ1=2Nd (a), the length of the scarred zone ls (b), the scaled scar number ϵ1=2ns
(c), and the number of dislocations per scar M (d) for simulated ground states of the cap are shown as functions of the reduced tension,
T=T�. Insets of (a) and (c) are unscaled dislocations and scar numbers. Results from unconstrained, “free dislocation" and imposed
n-fold symmetric simulations are shown, respectively, as crosses and filled circles. Color scale of points in (b) correspond to
dimensionless dislocation cost ϵ ¼ ðb=WÞ2ðW=RÞ−4, where simulations were carried out over a range of cap sizes and curvatures:
W=b ¼ 100–1400 andW=R ¼ 0.05–0.3. The dashed lines indicate predictions from asymptotic analysis of dominant and subdominant
energetics of defect patterns.
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“ring” allow us to reach highly “defective” caps, up to
ϵ−1 ≃ 6 × 104 and Nd ≈ 250.
Unlike the dislocation number and scar length, the

optimal scar number does not derive from the asymptotic
stress pattern σdij in the b=W → 0 limit, which is indepen-
dent of ns. In [16], it was shown in the limit of narrow scars
(ls=W ≪ 1) that the ns-degenerate energetics encoded in
the elastic energy of asymptotic stress σdij correspond
directly to the combination of relaxation energy per scar
and the repulsive interactions between scars, which
describe, respectively, the dominant gains and costs of
multiscar patterns. Here, we consider subdominant costs of
the self-energies of scars, in terms of distinct costs
attributed to the ends and lengths of scars, which describe
energetics of fine-scale (intrascar) stresses absent from the
continuum limit, and more important, lift the degeneracy of
the energy with ns.
Scars differ from ordinary grain boundaries in that the

former terminate in the bulk of crystal [13]. Crossing a
grain boundary implies rotation of crystal axes by b=D,
where D is the dislocation spacing. Hence, scar ends are
disclinationlike singularities, points around which lattice
directions rotate rapidly [28], and the far-field stresses
generated by scars are dominated by these end singularities.
Estimating dislocation spacing as D ¼ lsns=Nd yields an
effective disclination charge s ≈ b=D ∼ ðb=lsÞðNd=nsÞ,
and the elastic cost to introduce this charge ls ≈W from
the cap edges becomes ∼Ys2W2 [22]. In addition to the cost
of the singular ends, grain boundary scars are characterized
by a “line tension” ∼Yb2=D½lnðD=bÞ þ Ec� [28], where Ec
parameterizes the inelastic core energies of dislocations,
from which we estimate

Eself ≈ n−1s YðNdb=WÞ2 þ Yb2Nd ln

�
NdW
nsb0

�

∼ E0½n−1s þ ϵ1=2 lnðnsϵ1=2Þ�; ð8Þ

where b0 is a renormalized core size and E0 ≈ YðW=RÞ4W2.
The elastic cost of scar tips favors a large number of low-
angle scars, which is balanced by the weaker (∝ ϵ1=2)
preference of line tension for dense scars (small ns). This
sets an optimal scar number ns ∼ ϵ−1=2 ≫ 1 that diverges in
the continuum limit as W=b → ∞. As the dislocation
number and scar length vary with T=T�, we expect more
generally that optimal scar number of ns-fold symmetric
states behaves as

ns ¼ ϵ−1=2n̄sðT=T�Þ; ð9Þ
where n̄sðxÞ is dimensionless function which vanishes as
x → 1. Assuming n-fold symmetry for all T, we may
determine n̄sðT=T�Þ by numerically optimizing self-energy
contributions for all T=T� (see SupplementalMaterial [27]).
This prediction for optimal scar number is compared to
numerical ground states (both n-fold and “free dislocation”

simulations) in Fig. 2(c), confirming the collapse of optimal
scar number to form of Eq. (9) as ϵ → 0. Both dislocation
and scar number diverge as ϵ−1=2, implying a universality in
the approach to the continuum distribution of dislocations.
Remarkably, the number of dislocations per scar Nd=ns ≡
MðT=T�Þ is predicted to approach a constant value for a
given ratio T=T�, independent of lattice spacing. As shown
in Fig. 2(d), M varies weakly with tension, from M ≃ 1 as
T → T�, to roughly six dislocations per scar in the absence
of boundary forces (T ¼ 0).
We conclude with an analysis of the symmetry of scar

patterns in our “free dislocation" simulations (e.g., defect
positions not constrained to n-fold patterns) examples of
which are shown in the range 0 ≤ T < T� in Fig. 3. We
quantify the degree of n-fold symmetry in terms of the
angular transform of simulated dislocation positions,
ρ̄m¼

R
dAeimθρðxÞ, and analyze the relative amplitudes

of the principle nonzero mode m ¼ ns—which serves
as definition of scar number of “free dislocation”
simulations—compared to higher harmonics of the distri-
bution, m ¼ kns. Identical, evenly spaced scars imply
jρ̄ns j ¼ jρ̄2ns j ¼ jρ̄3ns j ¼ …, and therefore, we define S≡
jρ̄2ns j=jρ̄ns j as a measure of perfect n-fold symmetry.
Figure 3(g) shows the variation of n-fold symmetry S with
boundary tension and susceptibility to defects, ϵ−1.
Significantly, for sufficiently large tension (T ≲ T�), simu-
lated ground states retain high-symmetry, characterized by
S≃ 1. Decreasing T for fixed ϵ−1, we find an abrupt
transition to S ≪ 1, indicating marked loss of n-fold
symmetry, coincident with the appearance of polydisperse
or forked, scar morphologies observed for T → 0
[Figs. 3(a)–3(c)]. Our simulations suggest that in the
continuum limit (ϵ → 0), n-fold symmetric dislocation
patterns become unstable to a lower symmetry, multiscale
pattern for T ≲ 0.4T�, or equivalently, when the length of
scarred zone exceeds a critical value, ls ≳ 0.3W.
While we relegate a detailed study of this structural

instability to a future publication [30], comparison of

FIG. 3 (color online). (a)–(f) free-dislocation ground states for a
sequence of increasing tension, with parameter values shown in
(g), a map of n-fold symmetry of dislocation pattern as measured
by order parameter S (defined in text), with dark and light colors
showing regions of n-fold symmetric and polydisperse, forked-
scar patterns, respectively.

PRL 112, 225502 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
6 JUNE 2014

225502-4



the stress and energy of ground-state patterns (see
Supplemental Material [27]) suggests that transition from
n-fold to “forked scar” patterns in our simulations is
consistent with a transition in the subdominant energetics
associated with fine-scale variations in the elastic energy,
rather than a reorganization of the dominant stress distri-
bution. As a consequence, those features of the dislocation
pattern determined by this asymptotic stress (as ϵ → 0), the
scar length, and dislocation number, are not altered by the
loss of n-fold symmetry, as we observe in Figs. 2(a)–2(b).
Moreover, the “scar number” of forked-scar patterns as
measured by the primary mode number of ρ̄m follows the
same data collapse in terms of T=T� and ϵ implied by
Eq. (9) for n-fold symmetric patterns [Figs. 2(c)–2(d)],
highlighting the more general applicability of the structural
and energetic hierarchy for controlling defect patterns
beyond conditions of idealized symmetry.
The emergence of a characteristic structure and ener-

getics of multidislocation patterns in the continuum limit of
b=W → 0 yeilds new predictions for the symmetries of
observable scar patterns formed on particle-coated liquid
intefaces in the poorly characterized shallow-curvature
regime [10], and it opens the door to a broader and more
rigorous understanding of the role of “plastic” modes of
curved-crystal relaxation beyond this particular limit (small
area coverage, larger boundary tension, rigid substrate). For
example, it has been shown [16] for flexible crystals bound
to deformable spherical substrates that the pattern of
“elastic” deformation triggered by confinement (radial
wrinkles) achieves the identical state of asymptotic stress
for T ≲ T�. Hence, the relative stability of plastic versus
elastic response to curvature is determined purely by the
respective subdominant costs of either mode, which reveals
a nontrivial transition from wrinkles to scars with increas-
ing geometric compression. Beyond small curvature,
ongoing work is considering how the appearance of excess
disclinations restructure the underlying dominant stress
distribution of highly curved caps, and thereby alter the
consequences of multidislocation stress collapse relevant to
1) optimal symmetries of multidislocation scars that deco-
rate “charged” disclinations of close spherical shells [5,13]
(e.g., the Thomson problem) and 2) the curvature-driven
transition from “uncharged” to “charged” dislocations scars
on crystalline caps.
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