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We investigate the relationship between passive mode locking and the formation of time-localized
structures in the output intensity of a laser. We show how the mode-locked pulses transform into lasing
localized structures, allowing for individual addressing and arbitrary low repetition rates. Our analysis
reveals that this occurs when (i) the cavity round-trip is much larger than the slowest medium time scale,
namely the gain recovery time, and (ii) the mode-locked solution coexists with the zero intensity (off)
solution. These conditions enable the coexistence of a large quantity of stable solutions, each of them being
characterized by a different number of pulses per round-trip and with different arrangements. Then, each
mode-locked pulse becomes localized, i.e., individually addressable.
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Localized structures (LS) are confined states appearing
in nonlinear dissipative systems having a large aspect-ratio.
They are characterized by a correlation range much shorter
than the size of the system, making them individually
addressable objects. LS may form when two different
solutions coexist for the same values of the parameters,
although more complex scenarios exist, see [1,2] for a
review. The most common case consists in the coexistence
of a homogeneous and a modulated solution [3,4].
Spatial LS have been widely observed in nature in

systems like granular media [5], gas discharges [6], semi-
conductor devices [7], reaction-diffusion systems [8], fluids
[9], convective systems [10] and optical cavities [11]. The
possibility of using LS as information bits for processing
information in optical devices [12–14] has attracted an
increasing interest in the last twenty years. LS have been
observed in the transverse section of broad-area semi-
conductor microcavities injected by a coherent electromag-
netic field [15] (passive morphogenesis) and are also
termed “cavity solitons.” More recently, spatial LS have
been observed in laser systems where they arise from
spontaneous emission noise [16,17] (active morphogene-
sis), without requiring an injected field. Because these
lasing LS appear in a phase invariant system, their
dynamical ingredients and their properties are very differ-
ent from the LS appearing in injected resonators [18].
Recent works have addressed the question whether the

concept of LS can be extended to the time domain [19–22]
in the case of optically injected cavities. Here we propose to
answer to this question considering a phase invariant
system, namely a passively mode-locked laser. Passive
mode locking (PML) is an elegant method leading to the
emission of pulses much shorter than the cavity round-trip.
It is achieved by combining two elements, a laser amplifier
providing gain and a nonlinear loss element, usually a

saturable absorber (SA). The different dynamical properties
of the SA and of the gain create a window for regeneration
only around the pulse.
PML can be successfully described via the seminal

Haus’ master equation, which combines the nonlinear
Schrödinger equation with dynamical nonlinear gain and
losses [23]. In fiber or Ti:sapphire lasers [24], for which the
gain and the absorption are respectively much slower and
faster than all the other variables, the Haus equation can be
approximated by the subcritical cubic-quintic complex
Ginzburg-Landau equation where one replaces for simplic-
ity the slowly evolving net gain—which has a typical time
scale of Γ−1 ¼ 10 ms in doped fibers—by a constant. This
constant must be determined self-consistently as it depends
on the number of PML pulses per round-trip, which may be
one (fundamental PML) orNh (N-th order harmonic PML).
The stability of these different emission states is described
by the so-called background stability criterion of PML [25],
which states that a pulsating solution is stable only if the
losses are larger than the gain during the whole interval
between pulses. Accordingly, the gain constant of the stable
solution must be negative, leading to a well defined value of
Nh for a given value of the pump and of the round-trip. The
PML pulses are interpreted as dissipative solitons, see [26]
for a review, and they are sometimes studied as perturbed
nonlinear Schrödinger conservative solitons.
Noteworthy, a similar regime exists in monolithic semi-

conductor PML lasers in which the cavity round-trip
(τ ∼ 10 ps) is much shorter than the gain recovery time
scale Γ−1 ∼ 1 ns and where the gain weakly evolves around
its equilibrium value. On the other hand, in external cavity
configurations [27,28], the semiconductor fast time scales
allow exploring the transition from the regime Γτ ≪ 1
toward Γτ ≫ 1, which would be impractical with other
active materials.
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In this paper we describe both theoretically and exper-
imentally how lasing LS form out of a PML semiconductor
laser during the transition from the regime Γτ ≪ 1 toward
Γτ ≫ 1, thus clarifying in which conditions the pulses
becomes localized and can be used as independent bits for
storing information. We show that LS require two con-
ditions to be fulfilled: (i) the trivial off solution must be
stable and coexist with the mode-locked solution and
(ii) the cavity round-trip must be much longer than the
slowest medium time scale (i.e., the semiconductor gain).
While condition (ii) usually implies the violation of the
background stability criterion for fundamental mode lock-
ing and leads to a high order harmonic mode-locked
solution (Nh ≫ 1) as the unique stable solution, we show
that, if condition i) is verified, the background automati-
cally becomes stable. This enables the coexistence of a
large quantity of stable solutions, each of them being
characterized by a different number of pulses per round-trip
(ranging from zero to Nh) with different arrangements. In
this situation, the PML pulses becomes LS that can be
addressed as independent bits.
Our observations generalize to lasing systems the all-

optical buffer based on a Kerr fiber resonator [19,20].
Systems based on lasing LS have the advantage of avoiding
the use of an injection beam and bypassing the associated
tuning problems. Besides, the phase invariance of our
system opens the way to exploit the phase degree of
freedom for additional encoding of information. In terms
of applications, semiconductor devices as support of phase
invariant all-optical buffers are very attractive allowing for
fast time scale and scalability. Exploiting lasing LS in an
arbitrarily long cavity results in laser pulses at an arbitrarily
low repetition rate, with a reconfigurable pulse pattern,
which may be very useful for applications that necessitate
pulses on demand like, e.g., broadband spectroscopy,
telecommunications and astronomy.
We describe the PML laser using the generic delayed

differential equation model of [29] which generalizes
Haus’s model as it encompasses both the pulsating and
steady regimes. Denoting by A the amplitude of the optical
field, G the gain, and Q the saturable losses, the model
reads

_A
γ
¼ ffiffiffi

κ
p

exp

�ð1 − iαÞGτ − ð1 − iβÞQτ

2

�
Aτ − A; ð1Þ

_G ¼ g0 − ΓG − e−QðeG − 1ÞjAj2; ð2Þ

_Q ¼ q0 −Q − sð1 − e−QÞjAj2; ð3Þ

where time has been normalized to the SA recovery time, α
and β are the linewidth enhancement factor of the gain and
absorber sections, respectively, κ the fraction of the power
remaining in the cavity after each round-trip, g0 the
pumping rate, Γ the gain recovery rate, q0 is the value

of the unsaturated losses which determines the modulation
depth of the SA, s the ratio of the saturation energy of the
SA and of the gain sections and γ is the bandwidth of the
spectral filter. In Eq. (1), the subscript τ denotes a delayed
value of the variable, xτ ¼ xðt − τÞ. This delay renders the
dynamical system infinite-dimensional and it describes the
spatial boundary condition of a cavity closing onto itself.
As such, it governs the fundamental repetition rate of the
PML laser.
We use standard parameters values, see caption of Fig. 1.

Importantly, we stress that the dynamical scenario pre-
sented in this manuscript is mostly independent of the
phase-amplitude couplings. Hence, we choose α ¼ β ¼ 0
for the sake of simplicity. The lasing threshold is deter-
mined by the pump level g0 for which the off solution
ðA;G;QÞ ¼ ð0;Γ−1g0; q0Þ becomes linearly unstable; in
our case, it is given by gth ¼ ΓGth ¼ Γðq0 − log κÞ. Above
threshold, g0 > gth, a stable continuous wave (cw) solution
bifurcates from the off state, but rapidly becomes unstable
as g0 is further increased. At that point, a pulsing solution
emerges from it leading to PML through a supercritical
Andronov-Hopf bifurcation.
The common settings for achieving PML in semicon-

ductor lasers usually consider a SA with a relatively large
modulation depth (q0 ∼ 0.3) and a cavity round-trip shorter
than the gain recovery time τ ≪ Γ−1. With these two
conditions, the fundamental PML solution appears above
the solitary laser threshold and exhibits a single pulse per
round-trip. As the pump or the cavity length is increased,
the so-called regime of harmonic mode locking develops at
the expense of the fundamental PML solution. Such
transition can be understood via the background stability
criterion. Harmonic mode locking appears when this
condition is not verified anymore for the fundamental
regime. The increases of the pumping current or of the
cavity length lead to an increasing number of pulsesNh in a
single round-trip, such that the newfound value of Nh

FIG. 1 (color online). Intensity of the field (a),(c), gain and total
losses (b),(d). For short delay τ ¼ 10Γ−1 and G0 ¼ 1.1Gth (a),(b)
the intensity and the absorption (I, Q) reach an equilibrium
between pulses but not the gain that remains far from the
equilibrium value G0. For τ ¼ 100Γ−1 and G0 ¼ 0.98Gth (c),
(d) all the variables reach equilibrium and the solution becomes
localized. The parameters are α ¼ β ¼ 0, κ ¼ 0.8, s ¼ 3,
q0 ¼ 0.3, Γ−1 ¼ 25 and γ ¼ 10.
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becomes again compatible with the background stability
criterion. This mechanism is illustrated in Figs. 1(a) and
1(b), where Nh ¼ 4. One notices in Fig. 1(b) that the gain
(blue line) that tends to G0 (dotted line) never surpasses the
losses (red line). It is useful to stress that, for a given value
of pumping current and τ, only one of these harmonic PML
solutions is usually stable [25,29] notwithstanding a small
region of bistability in the transition region between
operation at harmonic number Nh and Nh þ 1.
The scenario described above radically changes for a

long cavity, still choosing a SA with a strong modulation
depth. We analyzed in Fig. 2 the PML bifurcation scenario
with DDE-BIFTOOL [30]. For a relatively short cavity, see
Fig. 2(a), fundamental PML still occurs as a supercritical
Andronov-Hopf bifurcation on the dominant cw lasing
mode and PML exists only above its bifurcation point up to
a pump level where it becomes unstable against the
harmonic PML solution Nh ¼ 2 (not shown). Yet, for
longer cavities, see Fig. 2(b), the Andronov-Hopf bifurca-
tion that originates the PML state becomes subcritical;
hence, the PML solution may exist below its bifurcation
point, where it coexists with the cw solution. For even

longer cavities, the breadth of the folded fundamental PML
solution may very well extend below the lasing threshold,
where it coexists with the off solution, see Fig. 2(c).
Interestingly, during this folding phenomenon the funda-
mental PML branch eventually disconnects from the cw
solution. It entails that PML appears for long delays as a
saddle-node bifurcation of limit cycles instead of a nascent
Andronov-Hopf bifurcation of the cw solution making this
scenario out of the reach of any weakly nonlinear analysis.
The change in dynamical scenario that occurs in Fig. 2(c)

has a profound consequence on the mode-locked solutions,
as it can be seen in Figs. 1(c) and 1(d): the fundamental
PML solution becomes stable even in the limit Γτ ≫ 1 and
the pulse, whose duration becomes dominated by the gain
recovery time (τp ∼ 3Γ−1) , becomes temporally localized
in the same limit. Moreover, a very large number of pulsing
solutions with different number of pulses per round-trip and
different arrangement become stable for the same param-
eter values.
We reconstructed analytically some of these solutions

using New’s approximation [25] for τ ¼ 16Γ−1 and restrict-
ing our analysis to equally spaced pulses solutions, see
Fig. 2(d). Clearly, all these branches of solutions extend
well below the laser threshold, where they stably coexist
among them and with the off solution, although New’s
approximation of neglecting spectral filtering leads to an
overestimation of the breadth of the PML region below
threshold. We calculated the expression of the folding point
gsn shown in Fig. 2(d). Such expression, in the long delay
limit τ ≫ 1 and for large saturation s ≫ 1, reads

gsn
gth

¼ κ − 1

κðq0 − log κÞW−1

�
− exp

�
q0
s

κ

κ − 1
− 1

��
; ð4Þ

with WkðzÞ the Lambert function. When gsn=gth < 1, PML
becomes stable below the unsaturated laser threshold, and
the region of coexistence between the off and the PML
solutions increases when q0 and s increase and/or in the
good cavity limit κ → 1, for which we simply have
gsn ¼ gth=s. Here, for the parameters in Fig. 2(d) one finds
gsn ¼ 0.89gth, in good agreement with the value calculated
numerically and shown in Fig. 2(d).
The multistability evidenced by Fig. 2(d) suggests, in

analogy to spatial LS [4,31], that the harmonic mode-
locked solution of maximal order that exists below thresh-
old becomes fully decomposable, since essentially any
pulse of this solution can be set on or off. We give evidence
of this property by imposing an arbitrary sequence of pulses
within the laser cavity and examining the stability of the
resulting configuration. The addressing is realized by
setting the system on the off solution and sending short
light pulses inside the resonator. Following the tradition of
[19], the bit sequence corresponds, in our case, to the letters
UIB-INLN encoded over bytes of five bits. Each pulse
optically injected triggers the emission of a lasing LS,
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FIG. 2 (color online). Panels (a)–(c) depict the bifurcation
scenario as a function of the gain for different values of the delay:
(a) τ ¼ 1.2Γ−1, (b) τ ¼ 2Γ−1, and (c) τ ¼ 4Γ−1. For short delays,
the PML periodic solution (in color) appears as a supercritical
Andronov-Hopf bifurcation of the dominant cw mode (thin black
line). The stability of the PML solution is indicated by thick lines
while the stability of the cw mode is omitted. Panel (d) shows, for
τ ¼ 16Γ−1, the folding of several PML solutions having a
different number of equally separated pulses per round-trip while
the folding point gsn is represented by a circle. The other
parameters are like in Fig. 1.
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whose shape stabilizes after a short transient. A single
localized pulse is not affected by a neighbor one, provided
that their time separation is sufficiently large, i.e., Δt≳ τp.
As can be seen in Fig. 3, the sequence remains stable, and
the device acts as an all-optical buffer with a bit rate limited
by the size of the LS, i.e. approximately 1 Gb=s for typical
semiconductor parameters. Erasing and writing the bits can
in principle be done incoherently via cross-gain modulation
in the gain and the SA sections, respectively, but this
necessitates a more complex dynamical model like, e.g.,
[32] and will be the topic of further studies.
The results of the above theoretical analysis are con-

firmed by an experiment based on a Vertical Cavity
Surface-Emitting laser (VCSEL) coupled to a distant
semiconductor based Resonant Saturable Absorber
Mirror (RSAM), as shown in Fig. 4. The VCSEL is
200 μm diameter broad-area device lasing at 980 nm
and manufactured by ULM photonics [33]. Its stand-alone
threshold (Jst) is about 380 mA. The RSAM is manufac-
tured by BaTop and it has a peak absorption of 99% (1%
reflection) at cavity resonance, which can be tuned by
controlling the RSAM temperature. When saturated its
reflection increases to 60%. The full width at half maxi-
mum (FWHM) of the RSAM cavity bandwidth is 16 nm, its
saturation fluence is at 15 μJ=cm2, and its relaxation time
is 1 ps.
Both the VCSEL and the RSAM are mounted on

temperature controlled substrates which allow for tuning
the resonance frequency of each cavity; parameters are set
for having the emission of the VCSEL resonant with the
RSAM at the VCSEL operating current. The light emitted
by the VCSEL is collected by a large numerical aperture
(0.68) aspheric lens and the similar lens is placed in front of
the RSAM. A 10% reflection beam splitter allows for light
extraction from the external cavity and the output is
monitored by a 33 GHz scope coupled with a 10 GHz
fast detector.
In order to match the conditions for observing LS, we set

the cavity round-trip to τ ¼ 15.4 ns, corresponding to a free
spectral range of 65 MHz and to τ ∼ 50Γ−1. Moreover the
VCSEL is biased at J < Jst. Narrow laser pulses are

regularly emitted at the fundamental repetition rate of
65 MHz, see Fig. 5(a) which is, to the best of our
knowledge, the smallest repetition rate ever obtained with
a PML semiconductor laser. The pulse width is below the
limit of our detection system but the corresponding spectral
emission consists of a peak 0.12 nm, (FWHM) broad, thus
indicating a pulse width of approximately 12 ps. Several
emission states coexist for the same values of bias current,
as shown in Fig. 5. The system may remain in the off state
that corresponds to the lower value between pulses or emit
a pulse train with different number of pulses (from one up
to nineteen) per round-trip. In these emission states, the
individual pulses may appear grouped [Fig. 5(b)] or equally
separated [Fig. 5(c)]. All these regimes coexist for a wide
range of the VCSEL current J. The multistability of our
system is depicted in Fig. 5(e) where we classify the
different solutions in terms of the number of pulses per
round-trip. It is important to remember that, for a given
number of pulses, an arbitrary number of different arrange-
ment of these pulses within the round-trip was found,
corresponding to an arbitrary number of different solutions.
Fig. 5(e) is obtained increasing the parameter J from
J ¼ 210 mA, where only the steady off solution is stable,

FIG. 3. Evolution over N ¼ 100 round-trips of a bit pattern
written optically by injecting 1 ps pulses in the cavity (top)
and detail over a single period (bottom). Parameters as
in Fig. 1 with τ ¼ 200Γ−1. The bit sequence is
10101010010001001110011000111001100.

FIG. 4 (color online). Experimental setup: temperature-stabilized
VCSEL and RSAM. Coll.: aspheric lens, BS: beam splitter, M:
mirror, and D1: detector.

(a)

(b)

(c)

(d)
(e)

FIG. 5 (color online). Panels (a), (b), (c), and (d): coexisting
time output traces (J ¼ 290 mA). Panel (e): experimentally
obtained bifurcation diagram for the number of pulses per
round-trip. The stability of each solution is indicated by the
solid horizontal lines.
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up to the value where it loses its stability (J ¼ 600 mA) and
then sweeping it down until a periodic emission with 19
pulses per round-trip appears, which probably correspond
to the highest order harmonic mode-locking solution that
can be fitted in our cavity round-trip [Fig. 5(d)]. As J is
decreased this solution looses its stability and the number
of pulses per round-trip reduces progressively, until only
one remains [Fig. 5(a)], thus showing the same bifurcation
scenario predicted in Fig. 2(d). Each solution is sponta-
neously appearing as J is scanned downward and, once a
new solution is found, we increase J to explore the stability
of this solution up to J ¼ 290 mA. As long as the system
remains on the same branch there are no changes in the
arrangement of the pulses; even if several arrangements are
possible, a given arrangement of N pulses/round-trip is
stable versus parameter variation.
In conclusion, we have shown theoretically and exper-

imentally that PML lasers with large temporal aspect-ratio,
i.e., having a cavity round-trip much larger than the other
system time scales, can display multistability among the off
solution and a large ensemble of different pulsing solutions.
In such conditions, each pulse can be independently
addressed, which allows us to interpret these pulses as
phase invariant (lasing) localized structures.
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