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Position measurements at the quantum level are vital for many applications but also challenging.
Typically, methods based on optical phase shifts are used, but these methods are often weak and difficult to
apply to many materials. An important example is graphene, which is an excellent mechanical resonator
due to its small mass and an outstanding platform for nanotechnologies, but it is largely transparent. Here,
we present a novel detection scheme based upon the strong, dispersive vacuum interactions between a
graphene sheet and a quantum emitter. In particular, the mechanical displacement causes strong changes in
the vacuum-induced shifts of the transition frequency of the emitter, which can be read out via optical
fields. We show that this enables strong quantum squeezing of the graphene position on time scales that are
short compared to the mechanical period.
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Vacuum forces cause attraction between uncharged
objects due to the modification of the zero-point energy
in the intervening space [1,2]. They become extremely
strong at short distances, which is considered to be a major
problem: for example, they lead to stiction and are
commonly believed to be “one of the most important
reliability problems in micro-electromechanical systems”
[3]. However, one can also envision that the strength of
vacuum forces enables them to be exploited for applica-
tions. A spectacular but challenging example is to engineer
repulsive Casimir forces for frictionless devices and lev-
itation [2,4]. Here, we present an application that is possible
with current experimental capabilities and without the need
to create repulsion.
We describe a technique that enables the highly sensitive

displacement detection of a mechanical system [5], which
is critical for many devices such as force and mass sensors
[6,7]. The ability to sense progressively smaller masses
opens up new avenues for studying biological and chemical
systems [8–11] and finds exciting applications in surface
science [12–14]. A technological push towards faster, high
precision measurements would open up the possibility to
observe a new class of phenomena, paving the way towards
the investigation of molecular diffusion processes and
binding at the single molecule level.
Our scheme is based on the Casimir interaction between

a surface and a quantum emitter: vacuum fluctuations lead
to a modification of electronic state energies, which
depends on the presence of nearby surfaces. A moving
atom would therefore experience a force associated with
the derivative of these shifts [15,16]. A stationary emitter
experiences a measurable change in its resonance fre-
quency that depends on the distance to the surface.
Finally, if the surface itself moves, such as the suspended
nanomechanical membrane in Fig. 1(a), the modulation of

the emitter’s resonance frequency can be probed, yielding
an extremely sensitive displacement detection. This can be
done by measuring the phase shift imparted on a field
scattered by the emitter [Fig. 1(b)].

FIG. 1 (color online). Motion sensing via vacuum potentials:
(a) A stationary emitter with states jei and jgi near a suspended
graphene sheet is illuminated by a laser. Vacuum fluctuations
(illustrated by loops) affect the emitter’s transition frequency,
while the scattered light is measured by homodyne detection.
(b) The membrane and the quantum system interact via vacuum
potentials: the emitter’s energy levels are shifted depending on its
distance d to the membrane. The distance-dependent level shift
translates into a phase shift of the light and can be read out by
measuring the p quadrature of the scattered field.
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There are several major advantages of our approach.
First, vacuum interactions between an emitter and a surface
are generic to any material. This provides a natural
coupling to any mechanical element without the need to
additionally functionalize or load it [17–19] or for the
material to have low optical losses and high reflection (to
integrate with an optomechanical system). Second, vacuum
interactions are typically strong and divergent at short
scales, providing a strong coupling between the mechanical
system and the emitter. We present a general formalism
describing the detection of motion based on interactions
with a nearby emitter. We describe realistic limits, includ-
ing backaction, emitter quenching, and imperfect measure-
ment efficiency. We also analyze in detail the case where
the mechanical system is a graphene resonator [20–22].
This system is a particularly attractive candidate because its
low mass and high Q factor [23] make it promising for a
wide class of sensors. However, the capacitive coupling
used in state-of-the-art detection techniques [23–25]
remains relatively weak. We show that it should be possible
to generate a squeezed state of motion in a time that is short
compared to the mechanical period, thus approximately
achieving the limit of “projective measurement.”
The Casimir potential for an emitter in its ground state at

position r can be calculated [15,16] by considering its
interaction with the vacuum modes of the electromagnetic
field via the dipole Hamiltonian Hdip ¼ −d ·EðrÞ ¼
−
P

kgkðrÞðjeihgj þ jgihejÞðak þ a†kÞ, where d is the dipole
moment of the emitter andEðrÞ is the electromagnetic field
at position r with normal modes k. We consider a two-level
system with states jgi and jei. gk denotes the vacuum Rabi
coupling strength between the emitter and normal mode k
with creation operator a†k and frequency ωk. The Casimir
shift for an atom in its ground state arises from the
nonexcitation preserving terms of Hdip, which enables
the ground state to couple virtually to the excited state
and create a photon jg; 0i → je; 1ki, which can be scattered
from the surface before it is reabsorbed. The corresponding
frequency shift of the ground state due to these fluctuations
is given by δωgðrÞ ¼ −

P
kgkðrÞ2=ðω0 þ ωkÞ, where ω0 is

the unperturbed resonance frequency of the emitter. The
shift can be reexpressed in terms of the classical dyadic
electromagnetic Green’s function Gðr; r; iuÞ evaluated at
imaginary frequencies ω ¼ iu,

δωgðrÞ ¼
3cΓ0

ω2
0

Z
∞

0

du
u2

ω2
0 þ u2

TrfGðr; r; iuÞg; ð1Þ

where c is the speed of light and Γ0 is the free-space
emission rate of the excited state. Similar calculations allow
one to determine the excited-state shift δωe and modified
emission rate ΓðrÞ near the surface [26,27]. At distances d
much closer than the free-space resonant wavelength λ0, the
shift in the transition frequency of the emitter typically
scales like Δω ¼ δωe − δωg ∝ Γ0=ðdk0Þ3 for a bulk
material and like Δω ∝ Γ0α=ðdk0Þ4 for graphene, where
α is the fine structure constant and k0 ¼ 2π=λ0.

Here, we derive the sensing capability of a single mode of
a mechanical system with a single emitter. Regardless of its
complexity, anymechanical system can generally be decom-
posed into a set of normal modes with effective motional
mass m, frequency ωM, displacement xM, and momentum
pM [28] and a free Hamiltonian of any given mode

HM ¼ p2
M

2m
þ 1

2
mω2

Mx
2
M: ð2Þ

Aspreviously described, the displacement of themechanical
system induces a position-dependent level shift on the
emitter of the form H ¼ ℏωðxMÞσz, where σz ¼
jeihej − jgihgj. As we are primarily interested in detecting
small displacements, it is suitable to linearize

Hint ¼ ℏωðxMÞσz ¼ ℏgxMσz þOðx2MÞ:
The coupling coefficient g ¼ ð∂Δω=∂xMÞ describes the rate
of change of the emitter frequency per unit displacement.
Next, we provide a quantum description of the emitter

interacting with an external laser which probes the emitter’s
changing resonance frequency. This description consists of
two parts: the dynamics of the emitter due to the incoming
field and the information about the emitter that is written
onto the scattered light. For the former, we restrict
ourselves to the interaction with a laser field with Rabi
frequency Ω and detuning Δ from the atomic transition
at xM ¼ 0, with Hamiltonian Hemitter ¼ ðΔ=2Þðjeihej−
jgihgjÞ þ ðΩ=2Þðjeihgj þ jgihejÞ. The latter is described
by aoutL ¼ −ainL þ ffiffiffiffiffiffi

νΓ
p jgihej, which relates the scattered

fields to the atomic coherence. ν characterizes the detection
efficiency, Γ is the emitter’s total (surface-modified) emis-
sion rate, and ainðoutÞ is the annihilation operator of the light
before (after) the interaction.
We consider the weak-driving limit, where the popula-

tion of the atomic excited state is negligible. This limit is
characterized by ϵ ¼ Ω2=ðΓ2=4þ Δ2Þ ≪ 1. Physically,
working in the limit of ϵ ≪ 1 enables the emitter’s
dynamics to be linearized and ensures that the optical
scattering is predominantly coherent. Adiabatic elimination
of the emitter yields an emitter-mediated inter-
action between the membrane and the light. The latter is
described by its quadratures xL ¼ ðaL þ a†LÞ=

ffiffiffi
2

p
, pL ¼

−iðaL − a†LÞ=
ffiffiffi
2

p
. As explained in the Supplemental

Material [29], the reduced system evolves under the
Hamiltonian H ¼ HM þHML, which contains a part
describing free motion (M) [see Eq. (2)] and a part
describing the interaction between motion and light (ML):

HML ¼ ℏκxMpL: ð3Þ
The coupling constant κ reflects the rate at which
information about xM can be obtained and depends on
the excited-state population, coupling strength g, and
detection efficiency ν. It is given by κ ¼ 2ḡ

ffiffiffiffiffiffiffiffiffiffi
ϵν=Γ

p
,

where ḡ ¼ g
ffiffiffi
2

p ð1 − ð3=8ÞϵÞ is a renormalized coupling
coefficient. In the case of ideal detection efficiency,
the rate at which information about xM [in vacuum
units xZPM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmωMÞ
p

] can be collected is given by
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κ2ideal ¼ ð4ϵḡ2=ΓÞ. Since we aim at measuring the mechani-
cal motion on time scales which are short compared
to ω−1

M , the dimensionless quantity ðκ2idealx2ZPM=ωMÞ ¼
ð4ϵðḡxZPMÞ2=ΓωMÞ represents an important figure of merit
characterizing the measurement strength.
The working principle of the scheme can be understood

by considering the dynamics in the absence of undesired
processes (which will be addressed below) during a short
measurement time window Δt ≪ ω−1

M . In this case, HML
leads to an evolution

xoutL ¼ xinL þ κ
ffiffiffiffiffiffi
Δt

p
xinM; ð4Þ

where the superscripts “in” and “out” denote operators
before and after the interaction. For large κ

ffiffiffiffiffiffi
Δt

p
, all

motional properties are mapped onto the output field.
Equation (3) also implies that the light imparts backaction
onto the membrane pout

M ¼ pin
M þ κ

ffiffiffiffiffiffi
Δt

p
xinL , which affects

the measurement precision for longer times Δt > ωM.
While our analysis thus far was completely general, we

now consider the case of graphene [30–37], which has two
complicating features. First, its “refractive index” (or, more
specifically, its conductivity) can be electrostatically tuned,
which alters the level shifts through the Green’s function in
Eq. (1). Second, graphene can strongly “quench” or absorb
light scattered by the emitter, yielding a fundamental
upper limit on the detection efficiency ν. Here, we briefly
summarize how these properties affect the overall sensi-
tivity of our scheme (see the Supplemental Material [29] for
details). Unlike in typical metals, the Fermi energy μ and
associated conductivity σðωÞ [38] can be greatly tuned in
graphene by applying a voltage [20] or by chemical doping
and intercalation [39]. The conductivity directly influences
how a proximal emitter interacts with the graphene, leading
to three different regimes, as illustrated in Fig. 2. In the first
regime of low Fermi level μ < 0.5ℏω0, the conductivity is
mostly real. Graphene is absorptive, as light can induce
interband electronic transitions. The total emission rate of
the emitter Γ ¼ Γrad þ Γnonrad separates into radiative (i.e.,
free-space) and absorptive channels, with the latter domi-
nating at close distances. Significant level shifts are
observable but with decreased free-space fluorescence
[Fig. 2(b)]. The second regime of intermediate Fermi level
yields optimal readout sensitivity, as interband absorption
becomes suppressed, leading to a sharp decrease in
ReσðωÞ, while the level shift is maximum [Fig. 2(c)]. In
the third regime of high Fermi level μ ≳ 0.6ℏω0, σðωÞ
becomes mostly imaginary and positive, analogous to a thin
conducting film. Such thin films support highly localized
guided surface plasmons. The emitter can efficiently couple
to these modes, which are dark to free-space detection
channels and again result in a large Γnonrad [40–42].
The implications can be seen in Fig. 3(a), where we plot

the sensitivity κ−1 versus μ and the distance d. Nonradiative
emission affects the sensitivity of our scheme since the
detection rate κ2 is proportional to the maximum possible
detection efficiency ν. In particular, ν ¼ ηdetðΓrad=ΓÞ con-
tains one term ηdet describing the efficiency at which
photons scattered in free space can be collected and is

technical in nature. The other term Γrad=Γ describes the
probability for a photon to be scattered to free space (versus
absorbed by the material). At an operating distance of
d ¼ 18 nm, the ideal Fermi level is μ ¼ 0.8. As a concrete
example, we consider here ϵ ¼ 0.3, ηdet ¼ 0.75,
Γ0 ¼ 2π × 240 MHz, and λ0 ¼ 2 × 10−6 m and a graphene
sheet with resonance frequency ωM ¼ 2π × 1 MHz and
mass m ¼ 2.81 × 10−18 kg. For these parameters,
Γrad=Γ ¼ 0.54. The frequency shift per unit length is g ¼
2π × 16 GHz=nm [Fig. 3(b)], which compares very favor-
ably to the best demonstrated couplings in cavity opto-
mechanics experiments [43] and gives rise to a sensitivity
of κ−1 ¼ 5.6 × 10−16 m=

ffiffiffiffiffiffi
Hz

p
.

The ability to perform highly sensitive position mea-
surements on time scales that are short compared to ω−1

M
allows one to create a squeezed state where the variance of
the position of the graphene sheet Vx ¼ hx2Mi − hxMi2 is
reduced below its zero-temperature variance Vx < x2ZPM.
This comes at the expense of an increased variance of the
momentum Vp in compliance with the Heisenberg uncer-
tainty principle VxVp ≥ ℏ2=4 [see the inset of Fig. 4(a)].
The rotation in phase space would prevent the squeezing of
xM or pM, if measurements over several oscillation periods
were required. However, since the high coupling strength κ

FIG. 2 (color online). Optical properties of graphene and
frequency shifts on a nearby emitter: (a) Conductivity σ of
graphene versus Fermi energy μ in units of ℏω0, where ω0 is the
emitter’s resonance frequency. The real part of the conductivity
(dashed line) describes absorption. For ðμ=ℏω0Þ < 0.5, light
radiated by the emitter is absorbed since photons with frequency
ℏω ≥ 2μ can induce interband transitions. For μ=ℏω0 > 0.6,
Imσ > 0. This implies that the emitter can couple to surface
plasmons, which increases its nonradiative decay rate. (b),(c)
Radiative photon scattering rate for low excitation power
fðd;ωLÞ ¼ ðΓradΩ2=4Þ=ðΓ2=4þ ðω0 þ Δω − ωLÞ2Þ, normal-
ized by the free-space resonant rate f0 ¼ Ω2=Γ0 for (b) μ ¼ 0
and (c) μ ¼ 0.8ℏω0. The shift (broadening) of the peak versus
distance reflects the emitter’s frequency shift (modified emission
rate), while the decrease in contrast reflects increasing emission
probability into nonradiative channels.
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allows for a fast and precise readout, the Casimir scheme
yields significant squeezing for realistic Q factors [44], as
shown in Fig. 4. Similar results can be obtained for higher
temperatures T if the ratioQ=T is kept constant. The ability
to perform fast position measurements is interesting for a
number of reasons. For example, it can shed light on
microscopic origins governing dissipation. As an example,
we consider two different damping types: a symmetric
model, where position and momentum are damped with
equal rates γx ¼ γp ¼ γ=2, and pure momentum damping
γx ¼ 0, γp ¼ γ. In the latter case, almost noise-free position
measurements can be made in the short time limit, i.e., if
the measurement time Δt is short compared to the rotation
period in phase space, since momentum damping requires a
time span on the order of ω−1

M to affect the position. The
high sensitivity of the scheme renders the distinction
between different types of damping possible. Symmetric
and momentum damping would become indistinguishable
if averaged over several oscillation periods but lead to
different results if a high temporal resolution is available, as
shown in Fig. 4(a). An even greater degree of squeezing can

be achieved if the incident light is modulated in time or if
short pulses are used [45].
We have shown that quantum vacuum interactions can be

a valuable resource for sensing at the quantum level. We
have specifically analyzed the scheme for graphene, which
is a promising platform for devices but currently lacks the
means for fast readout. However, in principle, the presented
method is quite general and applicable to a wide class of
materials. If the separation between the membrane and the
emitter is known, our scheme allows for the precise study
and accurate measurement of Casimir forces [46–50],
which is an important step towards the vision of controlling
and manipulating vacuum potentials. Finally, using spe-
cially engineered nanophotonic interfaces could provide
even larger dispersive interactions in our scheme, which
could lead to the generation of non-Gaussian quantum
states of motion.
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