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Charged-pion-interferometry measurements were made with respect to the second- and third-order event
plane for Au + Au collisions at \/syy = 200 GeV. A strong azimuthal-angle dependence of the extracted
Gaussian-source radii was observed with respect to both the second- and third-order event planes. The
results for the second-order dependence indicate that the initial eccentricity is reduced during the medium
evolution, which is consistent with previous results. In contrast, the results for the third-order dependence
indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the
medium evolution, and that the third-order oscillations are largely dominated by the dynamical effects from

triangular flow.

DOI: 10.1103/PhysRevLett.112.222301

The quark-gluon plasma (QGP), a state of nuclear matter
in which quarks and gluons are deconfined, is produced in
nuclear collisions at sufficiently high energy [1-4]. Once
formed, the QGP expands, cools, and then freezes out into a
collection of final-state particles. From extensive measure-
ments of final-particle momenta and correlations, a detailed
space-time picture of the evolution of the QGP is emerging
[5.6], but detailed studies of the final space-time distribu-
tion of hadrons and an understanding of the dependence on
the initial-collision geometry are needed to complete this
picture.

Quantum-statistical interferometry of two identical par-
ticles, also known as Hanbury Brown-Twiss (HBT) inter-
ferometry [7,8], provides information on the space-time
extent of the particle-emitting source. In heavy-ion colli-
sions, hadron interferometry is sensitive to the space-time
extent of the hadronic system at the time of the last
scattering, referred to as kinetic freeze-out. In noncentral
collisions of like nuclei, the initial density distribution is
predominantly elliptical in shape, with additional fluctua-
tions [9]. There is a larger pressure gradient along the minor
axis (in plane) of the ellipse, compared to that along the
major axis (out of plane), and this leads to a stronger
expansion of the source within the in-plane direction. This
phenomenon, elliptic flow, reduces the eccentricity of the

PACS numbers: 25.75.Dw

spatial distribution in the transverse plane, and may
even reverse the major and minor axes of the initial
distributions. Previous results are consistent with the
picture that the final distribution still retains the initial
elliptical orientation, although with a smaller eccentricity
upon freeze-out [10].

The full set of anisotropic moments of the flow
is characterized by the Fourier coefficients of the
azimuthal distribution of emitted particles: dN/d¢ « 1+
2> v, cos[n(¢p —¥,)], where ¢ is the azimuthal angle of
the particle, v,, is the strength of nth-order flow harmonic,
and U, is the nth-order event plane, where U, and U5 are
independent [11]. Elliptic flow is defined by the second-
order coefficient (n = 2), but triangular (n = 3), quadran-
gular (n = 4), and higher-order moments are also present
and have been measured in both the spatial and momentum
distributions in heavy-ion collisions [11-13]. While the
higher-order even moments are needed to accurately
describe the original elliptic shape, the odd moments arise
predominantly through fluctuations in the initial spatial
distribution or parity-odd processes, which are presumably
small. Depending on strength of the fluctuations, flow
profile, expansion time, and shear viscosity, these initial
spatial fluctuations may be preserved until freeze-
out [14,15].
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In relativistic heavy-ion collisions, HBT interferometry
with respect to different order event planes uniquely probes
the magnitude of the initial-state fluctuations and the
subsequent space-time evolution, thereby providing impor-
tant constraints on the dynamics of the QGP. Here, we
present results of azimuthal HBT measurements of charged
pions with respect to the second-order event plane, as
well as the first results with respect to the third-order
event plane in Au + Au collisions at /syy = 200 GeV at
central rapidity. The centrality and transverse momentum
dependence are also presented.

This analysis is based on data collected in 2007 with the
PHENIX detector [16]. Collision centrality was determined
using the measured charge distribution in the beam-beam
counters (3.0 < || < 3.9) [17]. The event planes ¥, were
determined using the reaction plane detector (RXNP)
covering forward and backward angles 1.0 < |p| < 2.8
[18]. The event plane resolution res(¥,) was estimated
by the two-subevent method [19] using the ¥, correlation
between the RXNP at forward and backward angles, where
res(V,) is defined as (cos[n(¥, — W, ..)]). Track and
momentum reconstruction of charged particles was per-
formed by combining hits from the drift chamber and pad
chambers in the central spectrometers (|57| < 0.35), where
the momentum resolution is §p/p ~ 1.3%@®1.2% x p [20].
Charged pions were identified by combining time of flight
from the electromagnetic calorimeters [21] covering azi-
muthal angle A¢ = /2, with reconstructed momentum
and trajectory in the magnetic field. Particles within 2
standard deviations of the peak of charged pions in mass-
squared distributions were identified as pions up to a
momentum of ~1 GeV/c.

The experimentally measured correlation function is
defined as A(q)/B(q), where A(g) is the relative-momen-
tum distribution of all combinations of identified pion pairs
in the same event, and B(q) is the event-mixed background
distribution of pairs formed from pions from different
events, but with similar event centralities, vertex positions,
and second-order (third-order) event planes. To remove
ghost tracks and detector inefficiencies, pairs with either
Az <5 cmand A¢ < 0.07 or Az < 70 cm and A¢ < 0.02
at the drift chamber were removed from the analysis, as
were tracks separated by less than 17 cm at the front face of
the electromagnetic calorimeters. The correlation functions
were also binned according to the centrality of the event
and the momentum of the pion pair. Positive and negative
pion pairs were combined to cancel charge-dependent
acceptance effect [22].

A three-dimensional analysis was performed with the
Bertsch-Pratt parametrization assuming a Gaussian source
[23,24],

G =exp(—Riq: — Riq; — Riq7 —2R3.q,q,). (1)

In this framework, the relative momentum ¢ is decomposed
into ¢q;, q,, and g, where ¢; denotes the beam direction, ¢,

is perpendicular to g; and parallel to the mean transverse
momentum of the pair k; = (pi7 + pPor)/2, and ¢, is
perpendicular to both ¢, and ¢g,. The R, (u=s,0,0)
Gaussian parameters provide information on the size of
the emission region in each direction, but R, and (to a lesser
extent) R, include contributions from the emission duration
and all are influenced by position-momentum correlations.
The R, is a cross term that arises from asymmetries in the
emission region [25]. The analysis was performed in
the longitudinally comoving system, where p;, = —p,,.
The measured correlation functions were fit by

C = N{(1 + G)IF, + (1 - 1)}, @)

where N is a normalization factor and F'. is the Coulomb
correction factor evaluated using a Coulomb wave function
[22,26]. Equation (2) is based on the core-halo model
[27,28], which divides the source into two regions: a central
core that contributes to the quantum interference and a
long-range component that includes the decay of long-lived
particles having a negligible Coulomb interaction and a
quantum statistical interference that occurs in a relative
momentum range that is too small to be resolved exper-
imentally. The fraction of pairs in the core is given by 4.

Finite event-plane resolution reduces the oscillation
amplitude of HBT radii relative to the event plane. In this
analysis, a model-independent correction suggested in
Ref. [29] was applied to A(g) and B(g). The correction
factor is 54% (32%) for the second-order (third-order)
event planes in 0%—10% centrality. As a cross-check, the
oscillation amplitude was also corrected by dividing by
res(¥,) [30]. Both methods applied to the second- and
third-order event-plane dependence are consistent within
systematic uncertainties. The effect of momentum resolu-
tion was studied using GEANT simulations following
previous analyses [22,31] and its impact is negligible on
the extracted radii (< 1%).

Systematic uncertainties were estimated by the variation
of single track cuts, pair selection cuts, and input source
size for the Coulomb wave function. Also incorporated
were the variations when using alternate event-plane
definitions from the forward, backward, and combined
RXNPs. Total systematic uncertainties for R? and R> are
not more than 5% (12%) and 7% (17%) for the second-
order (third-order) event plane, respectively.

Figure 1 shows R2, R2, R?, and R2, for pions as functions
of azimuthal angle ¢ with respect to W, and W5 for two
centrality bins, where (k;) ~ 0.53 GeV/c. The filled sym-
bols show the extracted HBT radii and the open symbols
are reflected by symmetry around ¢ — ¥,, = 0. For the 0%—
10% bin, R? shows a very weak oscillation relative to both
U, and W5, while R? clearly exhibits a stronger oscillation.
For the 20%-30% bin, R? and R for ¥, show opposite-
sign oscillations, as expected for an elliptical source viewed
from in-plane and out-of-plane axes [10]. For W5, R? shows
a weaker angular dependence of the same sign as R2.
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FIG. 1 (color online).

representing R2,

The azimuthal dependence of R2, R2, R?, and R for charged pions in 0.2 < k < 2.0 GeV/c with respect to
second-(a)—(d) and third-order (e)—(h) event plane in Au + Au colhslons at \/syy = 200 GeV. The R,
= 0. The filled symbols show the extracted HBT radii and the open symbols are reflected by symmetry around

is plotted relative to dotted lines

¢ — ¥, = 0. Bands of two thin lines show the systematic uncertainties and dashed lines show the fit lines by Eq. (3).

The oscillation amplitudes were extracted by fitting the
angular dependence of RI% to the functional form,

R +2 Y R:,cos[n(p—W,)] (u=s.0.0),

n=m,2m
=2 Z R;tn SIH ¢ - \Ilmﬂ (:u = 03)7 3)
n=m,2m
where Rﬁ.n are the Fourier coefficients [32].

Figure 2 shows the amplitudes relative to the average of
R:, R?, and R, 2R; ,/R; . as functions of initial eccen-
tricity (&,) and trlangularlty (&3). Each ¢, is calculated by
Monte Carlo Glauber simulation as given in Refs. [15,33]
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FIG. 2 (color online). The solid points are the oscillation
amplitudes relative to the average of HBT radii for four different
combinations (a) 2R? ,1/Rv 0 (b) 2R2, n/RYO, (c) 2R? 2/R2,, and
(d) 2R, /Rjo’ as a function of initial spatial anisotropy (g),),
which are calculated using the Glauber model. Boxes show the
systematic uncertainties. Open star symbols are the &g, from
STAR [10]. Dashed lines indicate the line of &, = [2R7 ,/RZ,|.

and decreases with increasing centrality; however, the
centrality dependence of &3 is weaker than that of e,.

The 2R22 /R? ¢ o [Fig. 2(a)] is sensitive to the final source
eccentricity (etma,) at freeze-out [29], and approaches the
whole source eccentricity in the limit of k = 0. Our results
for the ¥, dependence are consistent with the STAR
experiment [10]. We note that the € g,, defined from R;
has a systematic uncertainty of 30% due to the assumption
of space-momentum correlation in the blast-wave model
[29]. The positive value of &g, indicates that the source
shape still retains the initial shape extended out of plane,
though reduced in magnitude. Other combinations of
|2R ,/R2 | also have similar £, dependence, but are larger
than 2R22 /R2,. They include contributions from the
emission duration and will have different sensitivity to
the dynamics [34]. The 2R? ca/ R? are less than or equal to
zero, which seems to be an opposite trend to other
combinations, as noted already in Fig. 1. For all amplitudes,
the values for third order are small compared to those for
second order.

It is well known that the HBT radii are influenced by the
presence of dynamical correlations between momentum
and spatial distributions at the time of freeze-out [35,36], as
evident in the transverse pair momentum k; dependence of
the radii. Figure 3 shows these results for the third-order
oscillation amphtudes The R2;/R;, decreases with kr,
whereas R? i3/ R o does not show a significant dependence.

Although the reduced third-order anisotropy in Fig. 3
may indicate small triangular deformation at freeze-out,
its interpretation is complicated by the influence of
dynamical correlations from the triangular flow [40]. To
illustrate the different contributions of these effects, we
show separately the k; dependence for a source with radial
symmetry and triangular flow (€3 =0, 73 = 0.25) and a
source with triangular deformation and radial flow
(€5 = 0.25, v3 = 0) [37]. The model curves are taken from
Ref. [40], but the radii are scaled by 0.3 to fit within the
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FIG. 3 (color online). k; dependence of R? [(a),(b)] and R2
[(c),(d)] amplitudes relative to their averages for the third-order
event plane in two centrality bins. Calculations of the Gaussian
source model [40] are shown as solid and short-dashed (red)
curves, where the values are scaled by 0.3. Calculations using the
Monte Carlo simulation are shown as long-dashed (blue) curves.

range of the data. The R?; favors the deformed flow
scenario, while the R} ; matches the deformed flow only at
lower k.

To disentangle the relative contributions of spatial
and flow anisotropy to the azimuthal dependence of
HBT radii, we have performed a Monte Carlo simulation
introducing the spatial anisotropy and collective flow with
anisotropic modulation at freeze-out. The assumptions of
this model are similar to those adopted in the blast-
wave model [29,38], generalized for third-order modula-
tion, and do not include effects such as viscosity and
source opacity. The particle distributions in the transverse
plane were parametrized with a Woods-Saxon function,
Q(r)=1/{1+exp[(r—R)/a]}. To control the final source
triangularity, we introduced a parameter e into the radius
parameter R in Q(r) as follows:

R = Ry{1 —2e;3cos[3(¢ — )]}, (€]

Pr = Poll +2p5cos[3(¢p — @)]}, 5

where ¢ is the azimuthal angle of particle positions, ® is the
reference angle of the spatial anisotropy and triangular
flow, and R, is the average radius. To take the collective
flow into account, generated particles were boosted in
the transverse radial direction with a velocity f7 in addition
to their thermal velocities. We used a similar definition
to the blast-wave model [29,38] as the flow rapidity
p(r) = (r/R)tanh~'(B;). In Eq. (5), B, represents the
average of radial flow and f5 is used to control the flow
anisotropy. We assume that the particles are emitted with a
Gaussian time distribution with Az standard deviation,
which affects R, but not R,. The effect of HBT interference
was calculated by cos(Ax-q), where Ax and q are

4-vectors for relative distance and relative momentum of
the pair. All other parameters except e; and f; were tuned
to reproduce the strength of radial flow measured by my
spectra [39] and the averages of HBT radii shown in Fig. 1.
For this analysis Az was set to 3.5 fm/c (2.7 fm/c) for
0%—-10% (20%—-30%) to achieve better agreement with the
average of R2. A simulation result with e; = 0 and f; =
0.12 is shown in Fig. 3, displaying a trend that is
qualitatively consistent with Ref. [40].

To understand how the data may constrain these values,
we have performed a least-squares fit for e; and fs.
Figure 4 shows the contour plots of y?> defined by
{([2R; 3/R;, o] — 2R}, 3/ R; o]"™)/ E}?, where E is the
experimental uncertainty. The value of e; is well con-
strained by the measured value of R% and indicates that
the final triangularity is very close to zero. The inclusion of
R? favors a positive value for 35 for 0%—10%, but does not
add much information to 20%-30%, where a slightly
negative value of e is favored by R2. We note that the
discrepancy at high k7 remains, but the data integrated over
kr are primarily influenced by lower k; pairs. Detailed
comparison with a realistic hydrodynamic model (e.g.,
Refs. [40,41]) will be a key to fully understanding the
results.

In summary, we have presented results on the azimuthal
dependence of charged-pion HBT radii with respect to
second- and third-order event planes in Au 4 Au collisions
at /syy =200 GeV. The results for the second-order
event-plane dependence indicate that in noncentral events
the source starts with an initial elliptical distribution and
ends with an elliptical distribution at freeze-out, but with a
diluted eccentricity due to the medium expansion. For the
third-order event-plane results, the observed R2 oscillation
may come from flow anisotropy, but the small R? oscil-
lation with the same sign as R2 in noncentral collisions may
imply that the source expansion with triangular flow inverts
the initial triangular shape. A Monte Carlo simulation for
an expanding triangular transverse distribution produced
results consistent with this interpretation. Comparisons

015 0%-10% 1[ 20%-30% | ]
B
0.1f - 4
By
0.05 - B
. RIDY SO ek
-0.05 0 0.05 -0.05 0 0.05

FIG. 4 (color online). y? contours representing the difference
between data and simulation in 2R/%,2 / R,%.o (u = s,0), as func-
tions of e; and ;. Shaded areas represent y” less than unity and

constrained by the experimental uncertainty.
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with an event-by-event hydrodynamic model will be
needed to reveal the relation of spatial and hydrodynamical
flow anisotropy at freeze-out, as well as to provide further
constraints on the hydrodynamic evolution in relativistic
heavy-ion collisions.
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