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Many of the XYZmesons discovered in the last decade can be identified as bound states of a heavy quark
and antiquark in Born-Oppenheimer (BO) potentials defined by the energy of gluon and light-quark fields
in the presence of static color sources. The mesons include quarkonium hybrids, which are bound states in
excited flavor-singlet BO potentials, and quarkonium tetraquarks, which are bound states in BO potentials
with light-quarkþantiquark flavor. The deepest hybrid potentials are known from lattice QCD calculations.
The deepest tetraquark potentials can be inferred from lattice QCD calculations of static adjoint mesons.
Selection rules for hadronic transitions are derived and used to identify XYZ mesons that are candidates for
ground-state energy levels in the BO potentials for charmonium hybrids and tetraquarks.
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The XYZ mesons are unexpected mesons discovered
during the last decade that contain a heavy quark-antiquark
pair and are above the open-heavy-flavor threshold. Recent
discoveries of charged XYZ mesons in both the bb̄ sector
and the cc̄ sector have established unambiguously the
existence of tetraquark mesons that contain two quarks and
two antiquarks. In 2011, the Belle Collaboration discovered
Zþ
b ð10610Þ and Zþ

b ð10650Þ, which are revealed by their
decays into Υπþ to be tetraquark mesons with constituents
bb̄ud̄ [1]. In 2013, the BESIII Collaboration discovered the
Zþ
c ð3900Þ, which is revealed by its decay into J=ψπþ to be

a tetraquark meson with constituents cc̄ud̄ [2]. An updated
list of the XYZ mesons as of August 2013 was given in
Ref. [3]. The list included 15 neutral and 4 charged cc̄
mesons. The BESIII Collaboration has recently observed
an additional neutral state Yð4220Þ [4] and additional
charged states Zþ

c ð3885Þ [5] and Zþ
c ð4020Þ [6].

A full decade has elapsed since the discovery of the first
XYZ meson, the Xð3872Þ [7], but no compelling explan-
ation for the pattern of XYZ mesons has emerged. In simple
constituent models, an XYZmeson consists of a heavy quark
(Q) and antiquark (Q̄) and possibly additional constituents
that could be gluons (g) or light quarks (q) and light
antiquarks (q̄). The models that have been proposed can
be classified according to how the constituents are clustered
within the meson. They include (i) conventional quarkonium
ðQQ̄Þ1, (ii) quarkonium hybrid meson ðQQ̄Þ8 þ g, (iii) com-
pact tetraquark ðQQ̄qq̄Þ1 [8], (iv) meson molecule ðQq̄Þ1 þ
ðQ̄qÞ1 [9], (v) diquarkonium ðQqÞ3̄ þ ðQ̄ q̄Þ3 [10], (vi)
hadroquarkonium ðQQ̄Þ1 þ ðqq̄Þ1 [11], and (vii) quarko-
nium adjoint meson ðQQ̄Þ8 þ ðqq̄Þ8 [12]. The subscripts
indicate the color charges of the clusters within the meson.
All of these are possible models for neutral XYZ mesons.
The last five are possible models for charged XYZ mesons.
It would be desirable to have a theoretical framework firmly
based on QCD that describes all the XYZ mesons, including
their masses, widths, quantum numbers, and decay modes.

The Born-Oppenheimer (BO) approximation may provide
such a theoretical framework.
The BO approximation is used in atomic and molecular

physics to understand the binding of atoms into molecules.
It exploits the large ratio of the time scale for the motion
of the atomic nuclei to that for the electrons, which is
a consequence of the large ratio of the nuclear and electron
masses. The electrons respond almost instantaneously to
the motion of the nuclei, which can be described by the
Schrödinger equation in a BO potential defined by the
energy of the electrons in the presence of static electric
charges. The BO approximation for QQ̄ mesons in QCD
was developed by Juge, Kuti, and Morningstar [13].
It exploits the large ratio of the time scale for the motion
of the Q and Q̄ to that for the evolution of gluon fields,
which is a consequence of the large ratio of the heavy-quark
mass to the nonperturbative momentum scale ΛQCD. The
gluon field responds almost instantaneously to the motion
of the QQ̄ pair, which can be described by the Schrödinger
equation in a BO potential defined by the energy of
the gluon field in the presence of static color sources.
Conventional quarkonia are energy levels of a QQ̄ pair in
the ground-state BO potential. The energy levels in the
excited-state BO potentials are quarkonium hybrids. Juge,
Kuti, and Morningstar calculated many of the BO poten-
tials using quenched lattice QCD [13]. They calculated
the spectrum of bottomonium hybrids by solving the
Schrödinger equation in the BO potentials. They also
calculated some of the bottomonium hybrid energies using
lattice nonrelativistic QCD (NRQCD). The quantitative
agreement between the predictions of the BO approxima-
tion and lattice NRQCD provided convincing evidence for
the existence of quarkonium hybrids in the hadron spec-
trum of QCD. While direct lattice QCD calculations of the
spectrum may be more accurate, an advantage of the BO
approximation is that it reveals the pattern of the spectrum.
As pointed out in Ref. [14], it is also possible to define BO
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potentials with a light-quarkþantiquark flavor by the
energies of stationary configurations of light-quark and
gluon fields with the specified flavor in the presence of
static color sources. The energy levels of a QQ̄ pair in such
a potential would be quarkonium tetraquarks.
In this Letter, we apply the BO approximation for

quarkonium hybrids and tetraquarks to the cc̄ XYZmesons.
The deepest flavor-singlet BO potentials have been deter-
mined using lattice QCD calculations. We infer the deepest
BO potentials with light-quarkþantiquark flavor from
lattice QCD calculations of the static adjoint meson
spectrum. We derive selection rules for hadronic transitions
and use them to identify XYZ mesons that are candidates
for ground-state energy levels of charmonium hybrids and
tetraquarks.
The BO potentials for QQ̄ mesons can be labeled by

quantum numbers for the gluon and light-quark fields that
are conserved in the presence of static Q and Q̄ sources
separated by a vector r [13]: (i) the eigenvalue λ ¼
0;�1;�2;… of r̂ · Jlight, where Jlight is the total angular
momentum vector for the light fields, (ii) the eigenvalue
η ¼ �1 of ðCPÞlight, which is the product of the charge-
conjugation operator and the parity operator that spatially
inverts the light fields through the midpoint between the
Q and Q̄ sources, (iii) for the case λ ¼ 0, the eigenvalue
ϵ ¼ �1 of a reflection operator Rlight that reflects the light
fields through a plane containing the Q and Q̄ sources,
(iv) quark flavors, which can be flavor singlet or q1q̄2,
where q1; q2 ¼ u; d; s. For q1; q2 ¼ u; d, the distinct BO
potentials are specified by the isospin quantum number
I ¼ 0, 1. The value of Λ ¼ jλj is traditionally specified by
an upper-case Greek letter: Σ;Π;Δ;… for Λ ¼ 0; 1; 2;….
The value þ1 or −1 of η is traditionally specified by a
subscript g or u on the upper-case Greek letter. In the case
λ ¼ 0, the value þ1 or −1 of ϵ is traditionally specified by
a superscript þ or − on Σ. Thus the flavor-singlet BO
potentials VΓðrÞ are labeled by Γ ¼ Σ�

η ;Π�
η ;Δ�

η ;…, where
η is g or u, which specify the eigenvalues of jr̂ · Jlightj,
ðCPÞlight, and Rlight. We will refer to the light-field
configurations with those energies as Born-Oppenheimer
configurations.
In QCD without light quarks, the ground-state flavor-

singlet BO potential VΣþ
g
ðrÞ can be defined as the minimal

energy of the gluon field in the presence of the static Q and
Q̄ sources. An excited flavor-singlet BO (or hybrid)
potential VΓðrÞ, can be defined as the minimal energy of
the gluon field with quantum numbers Γ only if VΓðrÞ does
not exceed VΣþ

g
ðrÞ by more than the mass of a glueball with

the appropriate quantum numbers. In QCD with light
quarks, the minimal-energy prescription breaks down if
VΓðrÞ exceeds VΣþ

g
ðrÞ by more than 2 or 3 times the mass

of a pion, depending on the quantum numbers Γ. It also
breaks down if VΓðrÞ exceeds twice the energy of a static
meson, which is the minimal energy for light-quark and
gluon fields with the flavor of a single light quark in the

presence of a static Q̄ source. Similar complications arise in
the definition of a q1q̄2 BO (or tetraquark) potential. In all
these cases, if the BO potential exists, it must be defined by
a more complicated prescription involving excited states of
the light fields with the specified quantum numbers.
Many of the hybrid potentials were calculated by Juge,

Kuti, and Morningstar using quenched lattice QCD [13,15],
which does not include virtual quark-antiquark pairs.
At large r, they approach linear functions of r. At small
r, they approach the repulsive Coulomb potential between
a Q and Q̄ in a color-octet state, which is approximately
linear in 1=r. The deepest hybrid potentials areΠ�

u and then
Σ−
u , which is equal to the Π�

u potential at r ¼ 0. In the limit
r → 0, the Q and Q̄ sources reduce to a local color-octet
QQ̄ source, and the BO configuration reduces to a static
hybrid meson or gluelump, which is a flavor-singlet state of
the light fields bound to a static color-octet source. The
gluelump spectrum was first calculated using quenched
lattice QCD by Campbell, Jorysz, and Michael [16]. It was
recently calculated by Marsh and Lewis using lattice QCD
with dynamical light quarks [17]. The ground-state glue-
lump has JPClight quantum numbers 1þ−. In the limit r → 0,
theΠ�

u and Σ−
u potentials differ from the repulsive Coulomb

potential for a color-octet QQ̄ pair by an additive constant
that can be interpreted as the energy of the ground-state 1þ−

gluelump.
The tetraquark potentials can be specified by Λϵ

η and
quark flavors q1q̄2. None of them have yet been calculated
using lattice QCD. Some information about these potentials
at small r can be inferred from lattice QCD calculations
of static adjoint mesons, which are states with light-
quarkþantiquark flavor bound to a static color-octet source.
Foster and Michael have calculated the adjoint meson
spectrum using quenched lattice QCD with a light valence
quark and antiquark [18]. The qq̄ adjoint mesons with the
lowest energies are a vector (JPClight ¼ 1−−) and a pseudo-
scalar (0−þ). The central values of their energies were
larger than that of the ground-state 1þ− gluelump by about
50 and 100 MeV, respectively, but the differences were
within the statistical errors. Lattice QCD calculations with
dynamical light quarks would be required to determine
definitively the ordering of the three energies. For each
adjoint meson, there must be tetraquark potentials that in
the limit r → 0 approach the repulsive Coulomb potential
for a color-octet QQ̄ pair plus an additive constant that can
be interpreted as the energy of the adjoint meson. If these
potentials remain well defined at large r, it is possible that
they increase linearly with r, like the flavor-singlet BO
potentials. In this case, the tetraquark potentials would have
the same qualitative behavior as the hybrid potentials.
Given the quantum numbers JPClight of a qq̄ adjoint meson,

we can deduce the corresponding BO potentials. The
component r̂ · Jlight for an adjoint meson with spin Jlight
has 2Jlight þ 1 integer values ranging from−Jlight toþJlight.
There must, therefore, be a BO potential for each integer
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value ofΛ from 0 up to Jlight. The quantum number η for the
BO potentials is the value of ðCPÞlight for the adjoint meson.
One of the BO potentials is a Σ potential with reflection
quantum number ϵ ¼ ð−1ÞJlightPlight. Thus the BO poten-
tials associated with the 1−− adjoint meson are Π�

g and Σþ
g ,

while the BO potential associated with the 0−þ adjoint
meson is Σ−

u . Since the 1−− and the 0−þ adjoint mesons
have the lowest energies, it is reasonable to expect the
deepest tetraquark potentials to be Π�

g , Σþ
g , and Σ−

u .
There are several angular momenta that contribute to the

spin vector J of a QQ̄ meson. In addition to Jlight, there is
the orbital angular momentum LQQ̄ and the total spin S of
theQQ̄ pair. The spin vector of the meson can be expressed
as J ¼ Lþ S, where L ¼ LQQ̄ þ Jlight. The condition r ·
LQQ̄ ¼ 0 implies r̂ · L ¼ λ, where λ is the quantum number
for r̂ · Jlight. This puts a lower limit on the quantum number
L for L2: L ≥ Λ. For a flavor-singlet QQ̄ meson with BO
configuration Λϵ

η, the parity and charge-conjugation quan-
tum numbers are

P ¼ ϵð−1ÞΛþLþ1; (1a)

C ¼ ηϵð−1ÞΛþLþS: (1b)

The QQ̄ mesons are conveniently organized into heavy-
quark spin-symmetry multiplets consisting of states with
the same BO configuration Λϵ

η, radial quantum number n,
orbital-angular-momentum quantum number L, and q1q̄2
flavor. Each multiplet consists of a spin-singlet (S ¼ 0)
state and either one or three spin-triplet (S ¼ 1) states.
Conventional quarkonia are energy levels in the flavor-
singlet Σþ

g potential. The spin-symmetry multiplet for the
ground state in this potential consists of a spin-singlet
0−þ state and a spin-triplet 1−− state. The lowest-energy
quarkonium hybrids are energy levels in the flavor-singlet
Πþ

u , Π−
u , and Σ−

u potentials. The ground-state spin-symmetry
multiplets in these potentials are given in Table I. Tetraquark
QQ̄mesons are energy levels in BO potentials labeled by Λϵ

η

and light-quarkþantiquark flavor. The spin-symmetry mul-
tiplets for tetraquark QQ̄ mesons are most easily specified

by giving the JPC quantum numbers for tetraquark mesons
with flavor qq̄. The ground-state spin-symmetry multiplets
in the Πþ

g , Π−
g , Σþ

g , and Σ−
u potentials are given in Table I.

The JPC quantum numbers are those for I ¼ 0 and ss̄
tetraquarks and for the neutral member of the I ¼ 1 isospin
triplet. The charged members of the I ¼ 1 triplet have the
same JP and G-parity G ¼ −C.
Most of the observed decay modes of the XYZ mesons

are hadronic transitions to a quarkonium. Selection rules
for the hadronic transitions provide constraints on the
quarkonium hybrids or tetraquarks that can be considered
as candidates for specific XYZ mesons. The spin selection
rule S ¼ S0, where S and S0 are the total spin quantum
numbers for the QQ̄ pair before and after the transition,
follows from the approximate heavy-quark spin symmetry,
which is a consequence of the large mass of the heavy
quark. The Born-Oppenheimer selection rules also require
the BO approximation, in which the hadronic transition
betweenQQ̄mesons proceeds through a transition between
BO configurations with fixed separation vector r for the
Q and Q̄ sources. For simplicity, we will deduce these
selection rules for transitions between neutral QQ̄ mesons
with quantum numbers JPC and J0P0C0

. The corresponding
selection rules involving charged tetraquark mesons can
then be deduced from isospin symmetry. We consider
a transition via the emission of a single hadron h with
quantum numbers JPhCh

h and orbital-angular-momentum
quantum number Lh. The conservation of the component
of Jlight along the QQ̄ axis can be expressed as λ ¼
λ0 þ r̂ · ðJh þ LhÞ, where Jh and Lh are the spin and
orbital-angular-momentum vectors of h. This constraint
implies the selection rule

jλ − λ0j ≤ Jh þ Lh: (2)

Conservation of ðCPÞlight implies the selection rule

η ¼ η0 · ChPhð−1ÞLh : (3)

If λ ¼ λ0 ¼ 0, there is an additional constraint from
invariance under reflection through a plane containing
the QQ̄ axis:

ϵ ¼ ϵ0 · Phð−1ÞLh ðλ ¼ λ0 ¼ 0Þ: (4)

The amplitude for a transition that violates the selection
rules is generally suppressed by a factor of ΛQCD=MQv2,
where v is the typical velocity of the heavy quark. The
suppression may be avoided if the wave function has
significant support near the avoided crossing between
two BO potentials.
We proceed to apply the selection rules to the cc̄ XYZ

mesons. The spin selection rule implies that XYZ mesons
with transitions to the spin-singlet Σþ

g ð1PÞ charmonium
state hc must be spin-singlet states while those with
transitions to the spin-triplet Σþ

g ð1SÞ charmonium state

TABLE I. Ground-state spin-symmetry multiplets for the two
deepest hybrid potentials Π�

u and Σ−
u and for the Π�

g , Σþ
g , and

Σ−
u tetraquark potentials with flavor qq̄. A bold J indicates that

JPC is an exotic quantum number that is not possible if the
constituents are only QQ̄.

Quarkonium hybrids QQ̄qq̄ tetraquarks
ΓðnLÞ S ¼ 0 S ¼ 1 ΓðnLÞ S ¼ 0 S ¼ 1

Πþ
u ð1PÞ 1−− ð0; 1; 2Þ−þ Π−

g ð1PÞ 1þ− ð0; 1; 2Þþþ
Π−

u ð1PÞ 1þþ ð0; 1; 2Þþ− Πþ
g ð1PÞ 1−þ ð0; 1; 2Þ−−

Σ−
u ð1SÞ 0þþ 1þ− Σþ

g ð1SÞ 0−þ 1−−

Σ−
u ð1SÞ 0þþ 1þ−
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J=ψ or the spin-triplet Σþ
g ð1PÞ charmonium state χc1 must

be spin-triplet states. This puts strong constraints on XYZ
mesons with quantum numbers 1−−. In the hybrid multip-
lets in Table I, the only 1−− state is the spin-singlet state in
Πþ

u ð1PÞ. In the tetraquark multiplets in Table I, the only
1−− states are spin-triplet states in Πþ

g ð1PÞ and Σþ
g ð1SÞ.

The 1−− meson Yð4220Þ decays into hcπþπ− [4], so it must
be a spin singlet. It can only be identified with the 1−− state
in the Πþ

u ð1PÞ multiplet of the charmonium hybrid. The
1−− meson Yð4260Þ decays into J=ψπþπ− [19]. In
Ref. [14], it was identified as the spin-singlet member of
the Πþ

u ð1PÞ multiplet of the charmonium hybrid. However,
the decay into J=ψπþπ− would then violate the spin
selection rule. We instead identify it as the spin-triplet
1−− state in either the Πþ

g ð1PÞ or Σþ
g ð1SÞ multiplet of the

isospin-0 charmonium tetraquark.
Several of the hadronic transitions for the neutral cc̄ XYZ

mesons are the emission of a single vector meson ω or ϕ
with JPhCh

h ¼ 1−−. Since the kinetic energy of the vector
meson is small compared to its mass, we assume it is
emitted in an S-wave state. The BO selection rules in
Eqs. (2)–(4) reduce to jλ − λ0j ≤ 1, η ¼ η0, and also ϵ ¼ −ϵ0
if λ ¼ λ0 ¼ 0. If the final-state configuration is Σþ

g corre-
sponding to quarkonium, the selection rules reduce further
to Λ ≤ 1, η ¼ þ1, and also ϵ ¼ −1 if Λ ¼ 0. The only
possible initial-state configurations are Π−

g , Πþ
g , and Σ−

g .
This excludes all the hybrid multiplets in Table I. The only
tetraquark multiplets in Table I that are allowed are Π−

g ð1PÞ
and Πþ

g ð1PÞ. The Xð3915Þ decays into J=ψω and has
quantum numbers 0þþ [20]. It can be identified with the
0þþ state in the Π−

g ð1PÞmultiplet of isospin-0 charmonium
tetraquarks. The Yð4140Þ decays into J=ψϕ [21] and
therefore has C ¼ þ. The ϕ in the final state suggests
that the meson is an ss̄ charmonium tetraquark. The only
spin-triplet C ¼ þ states in Table I are the 0þþ, 1þþ, and
2þþ states in Π−

g ð1PÞ. The mass difference of about
230 MeV between the Yð4140Þ and the Xð3915Þ is
approximately twice the difference between the constituent
masses of the s and lighter quarks. This is compatible with
the identifications of Yð4140Þ and Xð3915Þ as states in ss̄
and isospin-0 Π−

g ð1PÞ multiplets, respectively.
The only hadronic transitions that have been observed

for charged XYZ mesons are the emission of a single pion
with JPhCh

h ¼ 0−þ. The Goldstone nature of the pion re-
quires that it be emitted predominantly in a P-wave state
if its momentum is much larger than its mass. The BO
selection rules in Eqs. (2)–(4) reduce to jλ − λ0j ≤ 1, η ¼ η0,
and also ϵ ¼ ϵ0 if λ ¼ λ0 ¼ 0. If the final-state configuration
is Σþ

g corresponding to quarkonium, the selection rules
reduce further to Λ ≤ 1, η ¼ þ1, and also ϵ ¼ þ1 if Λ ¼ 0.
The only possible initial-state configurations are Π−

g , Πþ
g ,

and Σþ
g . Isospin symmetry requires the initial configuration

to have isospin 1. The only tetraquark multiplets in Table I
that are allowed are Π−

g ð1PÞ, Πþ
g ð1PÞ, and Σþ

g ð1SÞ. The
Zþ
c ð3900Þ decays into J=ψπþ [2]. Its neutral isospin partner

Z0
cð3900Þ has C ¼ −. The spin-triplet C ¼ − tetraquark

states in Table I are the ð0; 1; 2Þ−− states in Πþ
g ð1PÞ and the

1−− state in Σþ
g ð1SÞ. The Zþ

c ð4020Þ decays into hcπþ [6].
Its neutral isospin partner Z0

cð4020Þ has C ¼ −. The only
spin-singlet C ¼ − tetraquark state in Table I is the 1þ−

state in Π−
g ð1PÞ. The Zþ

1 ð4050Þ decays into χc1π
þ [22].

Its neutral isospin partner Z0
1ð4050Þ has C ¼ þ. The spin-

triplet C ¼ þ tetraquark states in Table I are the 0þþ, 1þþ,
and 2þþ states in Π−

g ð1PÞ. The small mass difference
between Zcð4050Þ and Z1ð4020Þ is compatible with them
being in the same Π−

g ð1PÞ multiplet.
We used the spin selection rule to identify the Yð4260Þ as

a spin-triplet 1−− state in either the Πþ
g ð1PÞ or Σþ

g ð1SÞ
multiplet of isopin-0 charmonium tetraquarks. We used the
spin and BO selection rules to identify the Zcð3900Þ as
a spin-triplet state in either Πþ

g ð1PÞ or Σþ
g ð1SÞ multiplet of

isopin-1 charmonium tetraquarks. The Π�
u hybrid poten-

tial is deeper than the Σ−
u hybrid potential. If the Π�

g
tetraquark potential is similarly deeper than the Σþ

g
tetraquark potential, the most plausible identifications
would be Zcð3900Þ as a Πþ

g ð1PÞ state and Yð4260Þ as
a Σþ

g ð1SÞ state.
Our selection rules for hadronic transitions do not

provide very useful constraints on the few bb̄ XYZ mesons
that have been observed. The Zþ

b ð10610Þ and Zþ
b ð10650Þ

have transitions by emission of a single pion into both the
spin-triplet bottomonium states ΥðnSÞ and the spin-singlet
bottomonium states hbðnSÞ [1]. This violation of the spin
selection rule can be explained by the Zþ

b ð10610Þ having
a large B�B̄ molecular component and the Zþ

b ð10650Þ
having a large B�B̄� molecular component [23–25]. Within
the BO approach, large molecular components can arise
if an energy level is fortuitously close to the B�B̄ and B�B̄�

thresholds, so that the wave function has significant
support in the region of the avoided crossing between
the tetraquark BO potential and the BO potential for two
static mesons.
We have used the Born-Oppenheimer approximation to

derive selection rules for hadronic transitions between QQ̄
mesons. They strongly constrain the cc̄ XYZ mesons that
can be candidates for ground-state energy levels in the BO
potentials for charmonium hybrids and tetraquarks. The
selection rules should provide valuable guidance in the
search for additional XYZ states through their hadronic
transitions. Lattice QCD calculations of the tetraquark
potentials are needed to confirm that the deepest potentials
have been correctly identified. They would also allow the
BO approximation to be developed into a quantitative
theoretical framework for understanding the XYZ mesons
that is based firmly on QCD.
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