
Value of H0 in the Inhomogeneous Universe

Ido Ben-Dayan,1 Ruth Durrer,2 Giovanni Marozzi,2 and Dominik J. Schwarz3
1Deutsches Elektronen-Synchrotron DESY, Theory Group, D-22603 Hamburg, Germany

2Université de Genève, Département de Physique Théorique and CAP,
24 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland

3Fakultät für Physik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
(Received 5 February 2014; published 6 June 2014)

Local measurements of the Hubble expansion rate are affected by structures like galaxy clusters or voids.
Here we present a fully relativistic treatment of this effect, studying how clustering modifies the mean
distance- (modulus-)redshift relation and its dispersion in a standard cold dark matter universe with a
cosmological constant. The best estimates of the local expansion rate stem from supernova observations at
small redshifts (0.01 < z < 0.1). It is interesting to compare these local measurements with global fits to
data from cosmic microwave background anisotropies. In particular, we argue that cosmic variance (i.e., the
effects of the local structure) is of the same order of magnitude as the current observational errors and must
be taken into account in local measurements of the Hubble expansion rate.
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The Hubble constant H0 determines the present expan-
sion rate of the Universe. For most cosmological phenom-
ena, a precise knowledge of H0 is of utmost importance. In
a perfectly homogeneous and isotropic world,H0 is defined
globally. But the Universe contains structures like galaxy
clusters and voids. Thus, the local expansion rate measured
by means of cepheids and supernovae at small redshifts
does not necessarily agree with the expansion rate of an
isotropic and homogeneous model that is used to describe
the Universe at the largest scales.
Recent local measurements of the Hubble rate [1,2] are

claimed to be accurate at the few percent level, e.g., Ref. [1]
finds H0 ¼ ð73.8� 2.4Þ km s−1Mpc−1. In the near future,
observational techniques will improve further, such that the
local value of H0 will be determined at 1% accuracy [3],
competitive with the current precision of indirect measure-
ments of the global H0 via the cosmic microwave back-
ground (CMB) anisotropies [4].
The observed distance modulus μ is related to the

bolometric flux Φ and the luminosity distance dL by
(log≡log10)

μ ¼ −2.5 log½Φ=Φ10 pc� ¼ 5 log½dL=ð10 pcÞ�: ð1Þ

The relation between the intrinsic luminosity L, the
bolometric flux Φ, and the luminosity distance dL of a
source is Φ ¼ L=4πd2L. In a flat cold dark matter universe
with a cosmological constant (ΛCDM) with present matter
density parameterΩm, the luminosity distance as a function
of redshift z is given by

dLðzÞ ¼
1þ z
H0=c

Z
z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þ 1 −Ωm

p : ð2Þ

As long as we consider only small redshifts, z ≤ 0.1,
the dependence on cosmology is weak, dLðzÞ≃ c½zþ
ð1 − 3Ωm=4Þz2�=H0, and the result varies by about 0.2%
when Ωm varies within the 2σ error bars determined by
Planck [4]. However, neglecting the model-dependent
quadratic term induces an error of nearly 8% for z≃ 0.1.
The observed Universe is inhomogeneous and aniso-

tropic on small scales, and the local Hubble rate is expected
to differ from its global value for two reasons. First, any
supernova (SN) sample is finite (sample variance), and,
second, we observe only one realization of a random
configuration of the local structure (cosmic variance).
Thus, even for arbitrarily precise measurements of fluxes
and redshifts, the local H0 differs from the global H0.
Sample variance is fully taken into account in the literature,
but cosmic variance is usually not considered.
In the context of Newtonian cosmology, cosmic variance

of the local H0 has been estimated in Refs. [5–8]. The first
attempts to estimate cosmic variance of the local Hubble
rate in a relativistic approach can be found in Refs. [9,10]
(see, also, Ref. [11]) based on the ensemble variance of the
expansion rate averaged over a spatial volume. It has been
shown that this approach agrees very well with the
Newtonian one [9], and it predicts a cosmic variance which
depends on the sampling volume on the subpercent to
percent level. However, this approach still neglects the fact
that observers probe the past light cone and not a spatial
volume. Also, the measured quantity is not an expansion
rate but a set of the bolometric fluxes and redshifts.
In this Letter, we present the first fully relativistic

estimation of the effects of clustering on the local meas-
urement of the Hubble parameter without making any
special hypothesis about how the fluctuations can be
modeled around us. Considering only the measured
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quantities and the cosmological standard model with
stochastic inhomogeneities, we study the effect of cosmic
structures on the local determination ofH0, i.e., taking light
propagation effects fully into account. Other relativistic
approaches were recently proposed in Refs. [12,13]. In
Ref. [12], a “Swiss cheese” model was used in modeling
the local Universe; in Ref. [13], a “Hubble bubble” model
was used and the perturbation of the expansion rate, which
is not directly measurable, was considered.
We shall find that the mean value of the Hubble

parameter is modified at the subpercent level, while the
contribution from clustering to the error budget is larger,
typically 2% to 3%, hence, as large as observational errors
quoted in the literature [1]. As we shall see, the small
modification of the mean of the Hubble parameter can be
reduced by a factor of 3 by using the flux instead of the
distance modulus. On the other hand, the cosmic variance
induced by inhomogeneities on H0 is independent of the
observable used. Finally, we find that even for an infinite
number of SN Ia within 0.01 < z < 0.1 with identical
redshift distribution compared to a finite sample consid-
ered, clustering induces a minimal error of about 2% for a
local determination of H0.
Following Refs. [14,15], we use cosmological perturba-

tion theory up to second order with an almost scale-
invariant initial power spectrum to determine the mean
perturbation of the bolometric flux (and of the distance
modulus) from a standard candle and its variance.
Let us first consider the fluctuation of the mean on a

sphere at fixed observed redshift z. We denote the light-
cone average [16] over a surface at fixed redshift by h� � �i
and a statistical average by � � �. Using the results of
Refs. [17,18] (see, also, Ref. [19]), the fluctuation of the
flux Φ ∝ d−2L , away from its background value in the
Friedmann-Lemaître universe [denoted by ðdFLL Þ−2] is
given by

d−2L ¼ ðdFLL Þ−2½1þ Φ1=Φ0 þ Φ2=Φ0�; ð3Þ

where we expand Φ ¼ Φ0 þ Φ1 þ Φ2 up to second order in
perturbation theory. The ensemble average of hΦ1=Φ0i
vanishes at first order but not at second order and must be
added to another second order contribution from Φ2=Φ0;
we obtain (see, e.g., Ref. [20])

hd−2L iðzÞ ¼ ðdFLL Þ−2½1þ fΦðzÞ�; ð4Þ

where for z ≪ 1,

fΦðzÞ≃ −
�

1

HðzÞΔη
�

2

hð~vs · ~nÞ2i: ð5Þ

Here, ~n denotes the direction to a given SN and ~vs its
peculiar velocity, η is conformal time,Δη ¼ η0 − ηðzÞ is the
difference between the present time and the time at redshift

z, and H is the conformal Hubble parameter. In Ref. [15],
the full contribution is given in terms of 39 Fourier integrals
over the dimensionless power spectrum of the Bardeen
potential today, Pψ ðkÞ ¼ ðk3=2π2ÞjΨkðη0Þj2 with different
kernels. We have removed the observer velocity since
observations are usually quoted in the CMB frame corre-
sponding to ~v0 ¼ 0. A nonvanishing observer velocity
would nearly double the effect in Eq. (5). The dominant
peculiar velocity contribution at low redshift gives

fΦðzÞ≃ −
�

1

HðzÞΔη
�

2 τ2ðzÞ
3

Z
kUV

H0

dk
k
k2PψðkÞ; ð6Þ

where

τðzÞ ¼
Z

ηs

ηin

dη
aðηÞ
aðηsÞ

gðηÞ
gðη0Þ

:

gðηÞ is the growth factor, and the source and the observer
times are indicated with the suffixes s and 0.
The brightness of supernovae is typically expressed in

terms of the distance modulus μ. Because of the nonlinear
function relating μ and Φ, one obtains different second
order contributions,

hμi − μFL ¼ −
2.5

lnð10Þ
�
fΦ −

1

2
hðΦ1=Φ0Þ2i

�
; ð7Þ

where at z ≪ 1, we also find

hðΦ1=Φ0Þ2i≃ −4fΦ: ð8Þ
The approximate equalities in Eqs. (5) and (8) are valid

for z ≪ 1, where the first order squared contribution of the
peculiar velocity terms dominates over the other second
order contributions. For z ∼ 0.3 and larger, additional
contributions notably due to lensing become relevant,
see Refs. [14,15].
For measurements of the Hubble parameter, low redshift

SNe are used in order to minimize the dependence of the
result on cosmological parameters. As a consequence,
Eqs. (5) and (8) are good approximations for the aim of
this Letter.
Hereafter, we use the cosmological parameters from

Planck [4], the linear transfer function given in Ref. [21]
taking baryons into account, and kUV ¼ 0.1 hMpc−1, see
Ref. [15] for details. Increasing the cutoff does not change
our result due to two effects: the kernel k2PψðkÞ of the
peculiar velocity contribution decreases at large k, and
small-scale fluctuations are incoherent (see below) and
their contribution to the variance decays like 1=N, where N
is the number of supernovae.
As an illustration for the effects of cosmic structure on

the observed flux from a SN, we plot in Fig. 1 the average
hd−2L iðzÞ and its variance (as defined in Ref. [20]) using
Eqs. (4)–(6) and (8). Figure 1 clearly shows how at low
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redshift the dispersion of the flux is much more important
than the shift of the average (see, also, Refs. [14,15]).
Comparing Eqs. (4) and (7), we see that the flux

averaged over a sphere at constant redshift experiences a
different effect than the distance modulus averaged over the
same sphere.
On the other hand, the induced theoretical dispersion

on the bare value of H0, which is entirely due to squared
first order perturbations, is independent of the observable
considered to infer H0. To determine the dispersion of H0

from a sample of SNe, we consider that at small redshift
H2

0 ≃ c2z2=d2L.H0 inferred from the observation of a single
SN at redshift z ≪ 1 is then expected to deviate from the
true H0 by approximately [20]

ðΔH0Þ2 ¼
H2

0

4
hðΦ1=Φ0Þ2i: ð9Þ

Of course, in practice, observers do not have at their
disposal many SNe at the same redshift, so the average over
a sphere cannot be performed. Hence, we now go beyond
this simplifying assumption of previous works.
Let us estimate the (ensemble) variance of the locally

measured Hubble parameterH0 from the covariance matrix
of the fluxes, given an arbitrarily distributed sample of N
observed SNe at positions (zi, ~ni), which reads

�
ΔH0

H0

�
2

¼ 1

4N2

X
ij

Φ1ðzi; ~niÞ
Φ0ðziÞ

Φ1ðzj; ~njÞ
Φ0ðzjÞ

¼ 1

N2

X
ij

Vij

HðziÞΔηiHðzjÞΔηj
; ð10Þ

with

Vij ¼ τðziÞτðzjÞ
Z

kUV

H0

dk
k
k2PψðkÞIðkΔηj; kΔηi; ð~ni · ~njÞÞ;

ð11Þ

and

Iðx; y; νÞ ¼ 1

4π

Z
dΩk̂e

ixðk̂·~niÞe−iyðk̂·~njÞðk̂ · ~njÞðk̂ · ~niÞ

¼ xyð1 − ν2Þ
R2

j2ðRÞ þ
ν

3
½j0ðRÞ − 2j2ðRÞ�; ð12Þ

where ν ¼ ð~ni · ~njÞ and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 − 2νxy

p
¼ kd.

Here, d is the comoving distance between the SNe at
(zi, ~ni) and (zj, ~nj), jl denotes the spherical Bessel function

of order l, and k̂ is the unit vector in direction ~k. To arrive at
Eq., (12), we have introduced the Fourier representation of

Φ1ðzi; ~niÞ ¼ 2=ðHðziÞΔηiÞ~vsð~kÞ · ~ni and used some well-
known identities. Note that with Iðx; x; 1Þ ¼ 1=3 and
Eqs. (6) and (8), the autocorrelation term reprodu-
ces Eq. (9).
If the fluxes are perfectly coherent for all SNe so that

Φ1ðzi; ~niÞΦ1ðzj; ~njÞ ¼ 4σ2Φ0ðzjÞΦ0ðziÞ for all correla-
tions, we obtain ðΔH0=H0Þ2 ¼ σ2, while in the incoherent
case Φ1ðzi; ~niÞΦ1ðzj; ~njÞ ¼ δij4σ

2Φ0ðzjÞΦ0ðziÞ, we obtain
ðΔH0=H0Þ2 ¼ σ2=N. The reality lies somewhere in
between, wavelengths with kd < 1 being rather coherent
while those with kd > 1 are rather incoherent.
In order to estimate the effect of the cosmic (co)variance

for a realistic sample of SNe, we consider the following
setup. We calculate ΔH0=H0 from Eqs. (10)–(12) consid-
ering the redshifts of a sample of 155 SNe selected to lie in
the range 0.01 ≤ z ≤ 0.1 from the CfA3 and OLD samples
[22,23]. The redshift distribution of the sample is shown in
Fig. 2. We do not use their actual positions on the sky (see
below). We then also study the limiting case of infinitely
many SNe.
For the redshift distribution of the 155 SNe of

this sample, Eq. (10) yields a dispersion induced by
inhomogeneities between 2.2% and 3.3% for different
angular distributions for the SNe. From this range, we infer
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FIG. 1. The average hd−2L iðzÞ of Eq. (5) in units of Mpc−2 (thick
solid curve), its dispersion (shaded region), and the homogeneous
value (dashed curve) are computed within a range z ¼ 0.01 and
z ¼ 0.03. We have used a best-fit cosmology from Planck [4] and
a UV cutoff of kUV ¼ 0.1 hMpc−1.
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FIG. 2. The redshift distribution of the 155 SNe of the
CfA3þ OLD sample [22,23] with redshift within 0.01 and
0.1 considered here.
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ΔH0 ¼ ð1.6–2.4Þ km s−1Mpc−1; ð13Þ

with H0 as given in Ref. [1]. We have kept ν constant to
different values, and we have chosen a random distribution
of directions over one hemisphere. The different choices
give rise to the range quoted above. The smallest error
corresponds to a random distribution of directions over one
hemisphere, while the largest one corresponds to the case
where all SNe are inside a narrow cone (ν≃ 1). The
dispersion due to the actual angular distribution of real SN
samples is left for future studies.
Let us also estimate the effect of inhomogeneities on the

measured value of H0 itself for this sample. In Ref. [1], a
partial reconstruction of the peculiar velocity field has been
applied, which, however, comes from the density field in
the neighborhood of the SNe and, therefore, contributes
only an incoherent part which we neglect. Considering a
perfectly homogeneous universe, a measured Hubble
parameter Ĥ0 is deduced from the measurement of
μðz ≪ 1Þ≃ 5 logðcz=Ĥ0Þ þ C, with C a constant, see
Eqs. (1) and (2). However, this is not the true underlying
H0, since it ignores the local large-scale structure and,
therefore, gives a biased value. The true underlying Hubble
parameter is derived only by applying the appropriate
correction due to this structure. Comparing Eq. (7) with
the above expression, we have

H0 ≃ Ĥ0

�
1 −

3

2
fΦ

�
: ð14Þ

We now consider the 155 SNe of the sample used here
and generate the mean value of the corrected H0 starting
from a value of Ĥ0 and for the given redshift distribution.
The final result is about 0.3% higher than Ĥ0 (choosing a
larger cutoff affects only this result slightly). A similar
global shift has already been included in the analysis of
Ref. [1] as a consequence of the partial reconstruction of
the peculiar velocity field [24]. Let us underline that the
correction to H0 would be 3 times smaller if we would
consider the backreaction on the flux instead of the one
on the distance modulus. In this case, Eq. (14) should be
replaced by H0 ≃ Ĥ0ð1 − 1

2
fΦÞ.

Considering the quoted observational error of
2.4 km=s=Mpc [1] and the additional variance (13), we
obtain

H0 ¼ ½73.8� 2.4� ð1.6–2.4Þ� km s−1Mpc−1. ð15Þ

The tension with the Planck measurement [4], for which a
value ðH0ÞCMB ¼ 67.3� 1.2 km s−1Mpc−1 is reported, is
reduced when taking this additional variance into account.
In particular, adding the above errors in quadrature, we
obtain a deviation of 2.2σ to 1.9σ from ðH0ÞCMB, while the
difference is 2.7σ when using the error quoted in Ref. [1].
This analysis is insensitive to fluctuations on smaller scales

due to the incoherence of such contributions. Further
modeling of these scales, e.g., Ref. [12] (see, also,
Ref. [25]), might increase the uncertainty. However, effects
from nearby small-scale structures are at least partly
included in the analysis of Ref. [1].
Before concluding, we want to determine the ultimate

error for an arbitrarily large sample when the SNe are
distributed isotropically over directions. In this case, we can
integrate Iðx; y; νÞ over all directions. With

1

2

Z
1

−1
dνIðx; y; νÞ ¼ j1ðxÞj1ðyÞ;

we obtain for a normalized redshift distribution sðzÞ,
�
ΔH0

H0

�
2

¼
Z

dk
k
k2PψðkÞ

�Z
dzτðzÞsðzÞ j1½kΔηðzÞ�

HðzÞΔηðzÞ
�

2

;

ð16Þ

with
R
dzsðzÞ ¼ 1. Approximating the redshift distribution

of our sample using an interpolating function of the
histogram in Fig. 2, integrating from z ¼ 0.01 to 0.1, we
obtain a dispersion of about 1.8%, which corresponds to an
error of

ΔH0 ¼ 1.3 km s−1Mpc−1. ð17Þ

This is the minimal dispersion of a SN sample with a
redshift space distribution given by the one in Fig. 2. It is
not much smaller than the value obtained for the real
sample. Interestingly, this result is close to the ones
obtained in Refs. [8,9,13], some of them with a very
different analysis.
The errors from the nearby SNe with small ΔηðzÞ give

the largest contribution. Therefore, the dispersion can be
reduced by considering higher redshift SNe for which,
however, the model dependence becomes more relevant. If
we consider higher redshifts (close to or larger than 0.3), we
have to take into account also the other contributions to the
perturbation of the luminosity distance, see Refs. [17–19]
for the full expression. As it is well known (see, for
example, Refs. [14,15]), at redshift z > 0.3, the lensing
term begins to dominate.
In Ref. [26], the peculiar velocity field has been

reconstructed using the IRAS PSCz catalog [27]. As
already mentioned above, this is subtracted in the analysis
of Ref. [1]. It is clear that this procedure also modifies the
expected mean and its variance in our method, but a
detailed analysis of this is beyond the scope of this work.
As the (minimal) cosmic variance Eq. (17) receives mainly
contributions from scales larger than those considered in
the reconstruction, we expect that it still has to be taken into
account, in addition to the reconstructed peculiar velocities.
To conclude, in this Letter we estimate the impact of

stochastic inhomogeneities on the local value of the Hubble
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parameter and on its error budget for a given sample of
standard candles. Equations (10)–(12) and (16) are the
main results of this Letter, namely, a general formula for the
cosmic variance contribution to ΔH0 from a sample of SNe
with z≲ 0.2, where the Doppler term dominates, and its
limit for an arbitrarily large number of SNe isotropically
distributed over directions. This general formula can be
easily implemented and does not require an N-body
simulation for each set of cosmological parameters. The
required input is solely the linear power spectrum and the
distribution of the observed SNe in position and redshift
space. In particular, we find that for samples presently
under consideration, this error is not negligible but of the
same order as the experimental error, i.e., between 2.2%
and 3.3%. We have also considered different samples (e.g.,
95 SNe from Ref. [22]) in the range 0.01 < z < 0.1 and
find similar results. This cosmic variance is a fundamental
barrier on the precision of a local measurement ofH0. It has
to be added to the observational uncertainties, and it
reduces the tension with the CMB measurement of H0 [4].
Finally, even when the number of SNe is arbitrarily large,

an irreducible error remains due to cosmic variance of the
local Universe. We estimate this error and find it to be about
1.8% for SNewith redshift 0.01 < z < 0.1 and a distribution
given by the one in Fig. 2. This error can only be reduced
by considering SNe with higher redshifts, but if too high
redshifts are included, the result becomes strongly dependent
on other cosmological parameters like Ωm and curvature.
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