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We analyze the collective dynamics of self-propelled particles in the large-density regime where passive
particles undergo a kinetic arrest to an amorphous glassy state. We capture the competition between
self-propulsion and crowding effects using a two-dimensional model of self-propelled hard disks, which
we study using Monte Carlo simulations. Although the activity drives the system far from equilibrium,
self-propelled particles undergo a kinetic arrest, which we characterize in detail and compare with its
equilibrium counterpart. In particular, the critical density for dynamic arrest continuously shifts to larger
densities with increasing activity, and the relaxation time is surprisingly well described by an algebraic
divergence resulting from the emergence of highly collective dynamics. These results show that dense
assemblies of active particles undergo a nonequilibrium glass transition that is profoundly affected by

self-propulsion mechanisms.
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The equilibrium physics of dense particle systems is
usually understood in the framework of statistical mechan-
ics because it stems from the competition between particle
interactions and thermal fluctuations [1]. In particular, phase
transitions towards crystalline or amorphous structures
are routinely observed at equilibrium [2]. This approach
is challenged for particle assemblies that are not uniquely
driven by thermal fluctuations, but that can also pump
energy from their environment to self-propel themselves
[3.4]. Active particles are presently the focus of a large
interest, fueled by experimental developments allowing
the study of both natural living systems (such as bacteria
[5] and cells [6]) and synthetic colloidal [7] and granular [8]
particles. It is thus important to understand if and how
equilibrium phenomena are affected by this novel type of
nonequilibrium driving and dissipation mechanisms.

We study the behavior of self-propelled particles when
steric effects compete with self-propulsion [9-11]. Provided
crystallization is suppressed (for instance by size polydis-
persity), simple fluids at thermal equilibrium display at
large density a gradual transformation towards an arrested
disordered state [12]. While not yet systematically explored,
this situation is of experimental interest for several systems
of active particles. For instance, the complex mechanical
properties of epithelium tissues result from the influence of
self-propulsion mechanisms for close-packed cells [6,13],
while dense bacterial colonies are being studied experimen-
tally [14]. Self-propelled colloidal and granular assemblies
can also be compressed to large densities [15]. On the theo-
retical side, it was recently suggested that active particles,
despite being far from equilibrium, could display kinetic
arrest with qualitative analogies, but also strong differences,
with the equilibrium glass transition [11]. This suggestion,
obtained in the framework of mean-field approaches to
driven glassy dynamics, is by no means obvious as slow
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dynamics is usually fully disrupted by driving forces, such
as a shear flow [16,17]. Therefore, it is important to study
whether the competition between particle-scale driving
forces and glassy dynamics can yield a nonequilibrium
phase transition even in a more realistic situation, which is
our central goal.

To this end, we seek a minimal model to study the impact
of self-propulsion on the dynamics of dense assemblies
of self-propelled particles, allowing us to interpolate
smoothly between the well-known (but already complex)
equilibrium glassy dynamics, and the driven active case.
Therefore, by contrast with detailed numerical studies of
active matter at moderate densities, our model incorporates
active motion following the simplest models of active
matter, neglecting, for instance, hydrodynamic interactions,
particle anisotropy, or aligning interactions. We work in
two spatial dimensions, which is experimentally relevant
[8,13] and typically preferred in earlier studies [4,9,18].
To capture crowding effects, we use a 50: 50 binary mixture
of hard disks with diameter ratio ¢,/0, = 1.4, which
both suppresses crystallization and displays realistic glassy
dynamics at equilibrium. The hard-sphere model is also
convenient because it does not require the introduction of
an energy (or a temperature) scale. Instead it is uniquely
controlled, at equilibrium, by the packing fraction ¢ =
7N (o3 + 03)/(2L?) for N particles in a system of linear
size L, using periodic boundary conditions. We express
length scales in units of o;.

We use off-lattice Monte Carlo simulations to study
the glassy dynamics of the model [19]. At equilibrium, an
elementary move proceeds as follows. At time ¢, a particle
is chosen at random, say particle i, and a small random

displacement g,(t) = 50.5,-(1,‘) is proposed, where & sets the
typical amplitude of the moves, and &;(¢) is a random vector
drawn independently at each step from a unit square
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centered around the origin with a flat distribution. The
move is accepted provided it creates no overlap with
another hard disk. In equilibrium conditions, it was
established that Monte Carlo simulations meaningfully
and efficiently describe the slow dynamics of glass formers
provided the jump length &, is adjusted by seeking a
compromise between a small value (where the method
becomes equivalent to Langevin dynamics) and a large
value (creating unphysical nonlocal moves) [20]. We use
0g = 0.16, so that §, does not influence the physics, apart
from a trivial rescaling of the time. We have explicitly
checked that our results are not qualitatively affected by this
choice. Time scales are expressed in Monte Carlo steps,
such that one time unit 7y;c represents N attempted particle
moves. The equilibrium dynamics of the hard-disk system
is thus characterized by a unique control parameter, the
packing fraction ¢.

Following previous work [9,21], we introduce a self-
propulsion mechanism using a persistence time scale, z,
defined as a finite time scale governing rotational diffusion
so that our model falls into the class of “apolar active
particles,” characterized in particular by the absence of any
alignment rule. Rotational diffusion is easily implemented
in the Monte Carlo algorithm by generating time-correlated

random displacements. In practice, we initialize ci(t =0)

as before, §,(0) = 6y&;(0), but introduce temporal corre-
lations between successive attempted displacements at
times ¢ and 7/,

-

5i(1) = 8,(1') + 8, &(1). (1)

constraining |6; ,(7)| < &y, and §; < &y. As in equilibrium,
the particle move is only accepted if it creates no overlap
between particles, but the random displacement is updated
as in Eq. (1) independently of the acceptance condition,
thus generating a fixed persistent time 7 for the orientation.
Equation (1) means that particle displacements have the
same amplitude as in equilibrium, but they now keep a
memory of previous displacements over a finite time scale,
7= (8y/8,)?* (expressed in Monte Carlo time units, defined
above). Equation (1) represents a discrete-time analog of
the Langevin dynamics studied in Refs. [9,21], which is
recovered in the limits 8y, 6; — 0, keeping the persistence
time fixed [19]. Self-propulsion is thus uniquely character-
ized by 7, which reduces, in the dilute limit, to the persistence
time of a persistent random-walk motion. Equivalently, this
control parameter 7/7yc can be seen as an adimensional
rotational Péclet number [22]. Because thermal fluctuations
only affect rotational degrees of freedom, the translational
Péclet number is not a convenient control parameter in our
model [21].

While clearly minimal, the model efficiently captures the
competition between steric hindrance (controlled by ¢) and
self-propulsion (controlled by 7). We performed extensive
simulations in the steady state, varying (¢, 7) over a broad

range, typically using N = 10° particles. Our longer
simulations lasted 10'° steps. The model is presented more
extensively and compared to alternative numerical models
in Ref. [19], which shows in particular that the system
remains homogeneous at all densities, in contrast with
earlier numerical works [23-27]. Here we concentrate on
the large-density regime, which has not been explored
before.

We start our analysis with a brief description of the
glassy dynamics observed when ¢ increases in the absence
of self-propulsion, 7 = 0. In Fig. 1(a) we show the time
dependence of the mean-squared displacement,

(Ar2 (1)) = (|r(e) = 75 (0)), (2)

where 7;(r) denotes the position of particle j at time ¢
and brackets indicate an ensemble average performed in
steady-state conditions. The average is specialized to large
particles, the slowest component of the binary mixture.
While particles diffuse rapidly for moderate packing
fractions, diffusion slows down dramatically as ¢ increases.
We cannot observe long-time diffusion in the time window
explored by the simulation for ¢ > 0.803 because it is too
slow. Another signature of glassy dynamics is the emer-
gence of the intermediate-time plateau in Fig. 1(a), indicat-
ing that particle dynamics is essentially a “‘caged” motion
at intermediate times. This two-step dynamics is confirmed
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FIG. 1 (color online). Glassy dynamics for (a), (c) equilibrium
and (b), (d) self-propelled hard disks with persistence time
7 = 102. The time dependence of the mean-squared displacement
is given by Eq. (2), and the self-intermediate scattering function
for increasing packing fraction is given by Eq. (3). From left to
right in (a), (c): ¢ = 0.607, 0.700, 0.754, 0.773, 0.785, 0.790,
0.795, 0.800, 0.802, and 0.803. From left to right in (b), (d):
¢ = 0.607, 0.700, 0.743, 0.781, 0.806, 0.819, 0.823, 0.825,
and 0.828. Note the change of vertical scale between (a) and (b).
Two-step, glassy dynamics emerge in both cases, suggesting
that self-propelled particles undergo a nonequilibrium glass
transition.
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in Fig. 1(c) by the time evolution of the self-intermediate
scattering function,

Fy(gq.t) = <ei21-[7j(z)—7(0)1>, (3)

which quantifies dynamics occurring over a length 27/|4|.
We perform a circular average over wave vectors corre-
sponding to the typical interparticle distance, || = 6.2,
corresponding to the first peak of the structure factor.

Turning to self-propelled particles with 7 = 10% in
Figs. 1(b) and 1(d), we find that dynamics again becomes
slower as ¢ increases, with the development of complex time
dependencies in both time correlators. Clear differences
with the equilibrium situation already emerge for moderate
densities and short times, where active particles move
ballistically as a direct result of self-propulsion.

At larger densities, the plateau in F(q,t) is less pro-
nounced for self-propelled than for equilibrium particles.
Mean-squared displacements take lower values at short
times, showing that cage dynamics is profoundly affected
by the particle activity. While a fast erratic exploration of
the cage results from thermal noise, persistent motion is
impossible within a cage. Instead, we observe that self-
propelled particles transiently “stick” to the neighbor found
in the direction of motion for a duration 7, until randomi-
zation of the direction of motion allows further displace-
ment. As a result, particles can be fully arrested at short
times, reducing (Ar?(¢)) in this regime. The cage explora-
tion thus occurs over a broader distribution of times, which
produces a complex time dependence of F(g,?) and
(Ar?(t)) in the plateau regime. Physically, thermal vibra-
tions are suppressed by the persistent motion and occur over
a time 7 that may become decoupled from the microscopic
scale. This observation is crucial, because the equilibrium
physics of hard spheres is controlled by entropic forces [1],
which are then considerably impacted by self-propulsion.
Finally, although less mobile at short times, self-propelled
particles diffuse much faster at long times. Diffusive motion
is, for instance, still observed for ¢ = 0.823 and 7 = 102,
while it is fully arrested at this density at equilibrium. These
observations reveal that the nature of the glass transition is
dramatically modified for active particles.

We show in Fig. 2 a displacement map for self-propelled
particles with 7 = 10% and large density ¢ = 0.823, mea-
sured over a time interval corresponding to structural
relaxation (see below for a definition). Clearly, the flow
of self-propelled particles at large density is spatially
correlated over large distances, and thus displays large-scale
dynamic heterogeneity [28,29]. Spatially correlated dis-
placements represent a form of emergent collective motion
arising from the competition between self-propulsion
and steric effects, which differs qualitatively from earlier
observations in active particle systems [30]. The analogy
between collective motion and dynamic heterogeneity in
epithelium tissues was noted [13].

FIG. 2 (color online). Displacement map for self-propelled
disks with ¢ = 0.823 and 7 = 10? over a time =~ 1.5 x 10’
corresponding to structural relaxation. It shows the emergence
of collective motion correlated over large distances in dense
assemblies of active particles.

We extract the long-time self-diffusion constant, Dy,
from its definition, D, = lim,_,,(Ar*(¢))/(4t), and report
in Fig. 3 the density evolution of D for equilibrium and
self-propelled disks. These data confirm that in all cases D
decreases sharply upon increasing ¢, as it varies by nearly 6
orders of magnitude between the simple fluid at ¢ ~ 0.6 to
the dense regime near ¢ ~ 0.8 — 0.83. Increasing 7 has two
opposite effects, as demonstrated by the nonmonotonic
evolution of D with 7 at fixed ¢. First, increasing 7 slows
down diffusion as particles need to wait at least a time scale
7 to see their orientation diffuse significantly. This effect
dominates at moderate densities, where D, decreases with
increasing 7; see Fig. 3. However, self-propulsion has a less
trivial effect at large ¢, where it accelerates the dynamics
dramatically. For ¢ = 0.8, D, increases by 3 orders of
magnitude between 7 = 0 (equilibrium) and z = 10. Such
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FIG. 3 (color online). Density dependence of the diffusion
constant for different persistence times. Inset: The critical density
@. obtained from Eq. (4) increases continuously with z.
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an acceleration of the dynamics could result from the
complete disappearance of the glass transition (as for
shear flow [31]), but the data in Fig. 3 suggest a different
scenario. Although dramatically affected, the density
dependence of the diffusion constant for 7 > 0 remains
very sharp, indicating that diffusion will cease above a
density which remains well defined. In other words, our
simple model of self-propelled hard disks displays a
nonequilibrium form of dynamic arrest, despite the pres-
ence of driving forces with finite amplitude. This finding is
fully consistent with the theoretical suggestion in Ref. [11].

We quantify the effect of the self-propulsion on the
location of the glass transition by extracting a critical
density ¢, using a power-law description,

Ds ~ ((pc - (p)}" (4)

where the exponent y and the critical density ¢, might
depend on 7. Equation (4) is inspired by equilibrium
studies of the glass transition [32], and can be derived
in the framework of mode-coupling approaches [11]. The
evolution with 7 of the fitted ¢, shown in Fig. 3 shows that
it increases continuously, departing from its equilibrium
value as soon as a finite persistence time 7 > 0 is
introduced. This confirms that the “re-entrant” evolution
of the diffusion constant with 7 results from the competition
between a growing ¢. (which accelerates dynamics at
constant ¢) and suppressed short-time vibrations (which
slows down dynamics). The shift of ¢, with 7, although
small in absolute value, in fact represents a spectacular
effect. With thermal fluctuations, it is not possible to
observe structural relaxation for ¢ =~ 0.83, which is instead
observed when 7 > 10. This implies that by breaking
detailed balance and going out of equilibrium, the system
discovers dynamical pathways that are essentially closed at
equilibrium.

A tentative analogy with equilibrium systems suggests
a physical explanation of the observed shift of the glass
transition density with activity. Because hard disks cannot
cross, self-propulsion then generates an “effective” attrac-
tive force between particles moving towards one another
[33]. Equilibrium studies of adhesive hard spheres showed
that the glass transition density increases with the strength
of the attraction [34,35], because the equilibrium structure
at short length scales is modified. Although structural
changes occur in our system, it remains to be understood
whether a mapping from self-propelled hard spheres to
equilibrium adhesive particles is meaningful [33].

The relaxation dynamics in self-propelled hard disks
seems however fundamentally distinct from the equilibrium
case. In the hard-sphere fluid, the onset of dynamic slow-
down is described by a mode-coupling regime where
Eq. (4) holds, followed by a crossover to another regime
controlled by activated relaxation events between low-
lying metastable states [12,36]. Therefore, introducing
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FIG. 4 (color online). Critical representation of the diffusion
constant showing that the range of validity of Eq. (4) increases
with 7z from about 2 to 4 decades of slowing down.

self-propulsion could affect the relevance of such activated
dynamical processes. In Fig. 4 we confirm that the domain
of validity of the power law in Eq. (4) increases from 2 to 4
decades between equilibrium and self-propelled particles
with 7 > 10. This suggests that mean-field, mode-coupling
types of approaches might represent a valuable theoretical
starting point to describe the microscopic dynamics of
dense assemblies of active particles [10,11].

In conclusion, we found that self-propelled particles
undergo a nonequilibrium form of a glass transition at large
density that is distinct from its equilibrium counterpart, and
characterized by the emergence of a new form of collec-
tive motion directly resulting from the interplay between
activity and steric effects.

While completing this manuscript, R. Ni kindly sent a
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different model of self-propelled hard spheres where the
glass transition shifts with activity [37]. I also thank
A. Ikeda, D. Levis, and G. Szamel for discussions. The
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the European Research Council under the European Union’s
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