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We study one-dimensional fluctuating interfaces of length L, where the interface stochastically resets to
a fixed initial profile at a constant rate r. For finite r in the limit L → ∞, the system settles into a
nonequilibrium stationary state with non-Gaussian interface fluctuations, which we characterize analyti-
cally for the Kardar-Parisi-Zhang and Edwards-Wilkinson universality class. Our results are corroborated
by numerical simulations. We also discuss the generality of our results for a fluctuating interface in a
generic universality class.
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Fluctuating interfaces are paradigmatic nonequilibrium
systems commonly encountered in diverse physical sit-
uations, e.g., propagation of flame fronts in paper sheets,
fluid flow in porous media, vortex lines in disordered
superconductors, liquid-crystal turbulence, and many
others. Study of such interfaces has many practical appli-
cations in the field of molecular beam epitaxy, crystal
growth, fluctuating steps on metals, growing bacterial
colonies or tumor, etc [1–3]. A well-studied model of
fluctuating interfaces is the Kardar-Parisi-Zhang (KPZ)
equation [4], which is believed to describe a wide class of
such out-of-equilibrium growth processes.
Earlier studies of the KPZ equation focused on the

universal behavior of the interface roughness, a property
which, for instance, in 1þ 1 space-time dimensions is
characterized by the interface widthWðL; tÞ at time t for an
interface growing over a substrate of linear size L. It is then
known that WðL; tÞ grows algebraically with time as tβ for
times t ≪ Lz where z is the dynamic exponent, and
saturates for times t ≫ Lz to a L-dependent value ∼Lα.
Here, α is the roughness exponent, while β ¼ α=z is the
growth exponent. For the KPZ universality class in 1þ 1

dimensions, one has α ¼ 1=2 and z ¼ 3=2 [1–3]. More
recently, in this case, significant theoretical progress has
shown that in the growing regime (i.e., for times t ≪ Lz),
the notion of universality extends beyond the interface
width and holds even for the full interface height distri-
bution at late times [5–9]. For example, the scaled cumu-
lative distribution of the interface height fluctuations in a
curved (respectively, flat) geometry is described by the so-
called Tracy-Widom (TW) distribution FβðxÞ, with β ¼ 2

(respectively, β ¼ 1). The distribution F2ðxÞ (respectively,
F1ðxÞ) characterizes fluctuations at the edge of the spec-
trum of random matrices in the Gaussian unitary ensemble
[respectively, Gaussian orthogonal ensemble (GOE)]
[10,11]. Height fluctuations measured in experiments on
nematic liquid crystals with both curved and flat geometries

demonstrated a very good agreement with the TW distri-

butions [12,13].
One of the first models of interface growth is the Eden

model, aimed at addressing the growth of bacterial colonies
or tumors in mammals [14]. Such growth typically pro-
ceeds through stochastic cell division, and generates an
almost compact cell cluster bounded by a rough interface
that within the Eden model has scaling properties in the
KPZ universality class of interfaces with a curved geom-
etry. The growth however may be abruptly interrupted with
the cell cluster reduced to its initial size by application of
chemicals, as is done, e.g., in chemotherapy to stop the
spread of a tumor before it becomes life threatening. It is
then interesting to study how such random interruptions
affect the growth process. In this Letter, we show that
random interruptions, or random resettings, yield novel
steady states with non-Gaussian fluctuations which we
characterize analytically. We focus on the simpler case of
flat interfaces, but our results can be generalized to those
with a curved geometry.
We consider a 1þ 1-dimensional interface characterized

by a height field Hðx; tÞ at position x and time t. Starting

FIG. 1 (color online). Schematic interface evolution with
resetting: Starting from a flat profile, the evolution is interrupted
at random times by resetting to the initial configuration from
which it recommences.
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from an initially flat profile, Hðx; 0Þ ¼ 0∀x, the heights
evolve according to the KPZ equation [4]:

∂H
∂t ¼ ν

∂2H
∂x2 þ λ

2

�∂H
∂x

�
2

þ ηðx; tÞ; ð1Þ

where ν is the diffusivity, λ accounts for the nonlinearities,
while ηðx; tÞ is a Gaussian noise of zero mean and
correlations hηðx; tÞηðx0; t0Þi ¼ 2Dδðx − x0Þδðt − t0Þ. For
an interface of length L evolving according to (1), the
spatially averaged height Hðx; tÞ ¼ R

L
0 dxHðx; tÞ=L grows

with time with velocity v∞ ¼ ðλ=2Þ R L
0 dxhð∂H=∂xÞ2i. The

interface width W ≡WðL; tÞ is defined as the standard
deviation of the height about Hðx; tÞ. For times larger than
a nonuniversal microscopic time scale Tmicro ∼Oð1Þ, the
width exhibits Family-Vicsek scaling [15], WðL; tÞ∼
LαWðt=T�Þ, with the crossover time scale T� ∼ Lz corre-
sponding to the scale over which height fluctuations
spreading laterally correlate the entire interface. The scal-
ing function WðsÞ behaves as a constant as s → ∞, and as
sβ as s → 0. At long times t ≫ T�, the dynamics of height
fluctuations hðx; tÞ≡Hðx; tÞ −Hðx; tÞ reaches a nonequi-
librium stationary state (NESS) in a finite system, in which
the height distribution PstðhÞ is a simple Gaussian [1].
Motivated by the situation where the growth is randomly

interrupted, e.g., by chemicals, as discussed above, we
study the case where the interface is reset at a fixed rate r to
the initial flat configuration. The dynamics with random
interruptions, shown schematically in Fig. 1, raises a
natural question: Does it lead to a steady state and if so,
can one characterize the distribution of the steady state
height fluctuations? Here, we show that indeed random
interruptions lead, quite generically, to a nontrivial steady
state even in the thermodynamic limit L → ∞, and for a
class of 1þ 1-dimensional models including the KPZ
interface, we compute analytically the height distribution
in this steady state.
A recent series of work has shown that resetting

dynamics has a rich and dramatic effect even on a single
particle diffusing in a one-dimensional space x [16–19].
The system is a random walker diffusing in presence of
resetting, whereby the walker returns to its starting position
x ¼ x0 at a constant rate r. The dynamics models the
natural search strategy in which a search for misplaced
belongings after continuing in vain for a while recom-
mences by returning to the starting point. While with no
resetting, the spatial distribution of the walker is a Gaussian
centered at x0 with width growing diffusively with time asffiffi
t

p
, a nonzero r leads to a NESS, with an exponentially

decaying profile centered at x0 [16–19]. Thus, resetting
makes an otherwise diverging mean search time finite,
increasing the efficiency of the search strategy. Random
walks with restarts have been used in computer science as a

useful strategy to optimize search algorithms in hard
combinatorial problems [20–22].
Our model of resetting of 1þ 1-dimensional interface

dynamics is a natural extension of the above mentioned
single-particle studies to the case of an extended system
comprising many interacting degrees of freedom. We note
that a recent work also addresses resetting in an extended
system, namely, a one-dimensional coagulation-diffusion
process, albeit with a different resetting strategy [23].
While in the absence of resetting, the dynamics of

interface fluctuations has no steady state in the thermody-
namic limit, we demonstrate here that a nonzero resetting
rate drives the system to a nontrivial NESS, even in the
thermodynamic limit. The NESS obtained is characterized
by non-Gaussian interface fluctuations, as we demonstrate
analytically. In particular, the stationary interface widthWr
does not scale with the system size, but instead remains
bounded, scaling algebraically with r, Wr ∼ r−β, as r → 0.
We discuss our results for fluctuating interfaces belonging
to a generic universality class, including the KPZ and the
Edwards-Wilkinson (EW) class. Without resetting, the
steady state distribution of height fluctuations for both
the EW and the KPZ class are identical, and are Gaussian.
In contrast, this is not anymore the case in presence of
resetting, which carries the information of the different
growth dynamics of the KPZ and the EW class into the
steady state. Our analysis is supported by numerical
simulations.
We now turn to a derivation of our results. We start with

the observation that for times t ≫ Tmicro, when universal
scaling behaviors are expected, the dynamics involves two
time scales: (i) Tr ∼ 1=r, the average time between two
consecutive resets, and (ii) the crossover time T� ∼ Lz.
Here we consider the case Tr ≪ T� (but still Tr ≫ Tmicro),
which is easily achieved in the limit of an infinite system,
L → ∞, with finite r. In what follows, we set L → ∞, or
equivalently consider time scales t ≪ T� ¼ Lz, such that
the asymptotic dynamics is completely governed by the
resetting process.
In order to compute the height distribution Presetðh; tÞ at

time t in presence of resetting, we note that the dynamics in
the space of configurations is a Markov process. Indeed, let
us denote by C ¼ fhðx; tÞg0≤x≤L a configuration of the
whole system of size L. The KPZ equation (1) implies that
in the time interval between two successive resetting
events, the dynamics of the “vector” C, with entries labelled
by the space position x, is Markovian. The dynamics in
configuration space is thus a renewal process. Then, at a
fixed time t, let the time elapsed since the last renewal be in
[τ, τ þ dτ], with 0 ≤ τ ≤ t. Noting that the probability for
this event is re−rτdτ, we have

PresetðC; tÞ ¼
Z

t

0

dτre−rτPðC; τÞ þ e−rtPðC; tÞ: ð2Þ
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Here, PresetðC; tÞ [respectively, PðC; tÞ] is the probability to
be in configuration C at time t, starting from an initially flat
interface in the presence (respectively, absence) of any
resetting. The last term on the right-hand side (rhs) of (2)
accounts for the event when there has not been a single
resetting event in the time interval [0, t]. Integrating both
sides of Eq. (2) over all the possible configurations C, and
noting that PðC; τÞ is normalized to unity for every τ, we
check that PresetðC; tÞ for every t is also normalized. The
dynamics is Markovian in the configuration space, but is
not so for the relative height hðx; tÞ at a given point x due to
the presence of space derivatives of the height field on the
rhs of (1) [24]. Nevertheless, Eq. (2) being linear, one gets
the marginal distribution Presetðh; tÞ of the height field
hðx; tÞ by integrating Eq. (2) over heights hðy; tÞ at
positions y ≠ x,

Presetðh; tÞ ¼
Z

t

0

dτre−rτPðh; τÞ þ e−rtPðh; tÞ; ð3Þ

where Pðh; tÞ is the height distribution in the absence of
resetting, starting from a flat initial configuration. In the
limit t → ∞, we see from (3) that the system reaches a
steady state characterized by the distribution

PrðhÞ ¼ Presetðh; t → ∞Þ ¼
Z

∞

0

dτre−rτPðh; τÞ; ð4Þ

an exact result valid for any r and h. Note that due to
resetting, a nonlocal probability flux exists only from all
h ≠ 0 values to h ¼ 0. This leads to a circulation of
probability between a source at h ¼ 0 and several sinks
at h ≠ 0, so that the steady state reached is a NESS.
We consider first the simpler EW equation which

corresponds to λ ¼ 0 in Eq. (1), thereby leading to an
evolution linear in h [25]. In this case, v∞ ¼ 0 and the
Family-Vicsek scaling holds with the EW exponents α ¼
1=2 and z ¼ 2. Without resetting, the steady state distri-
bution PstðhÞ at times t ≫ T� in a finite system is Gaussian,
and is in equilibrium, in contrast to the NESS of a KPZ
interface. For times t ≪ T�, the interface distribution is
also Gaussian, but with a nonstationary width WEWðtÞ ¼
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t=ðπνÞp

, for all t. Hence, plugging this Gaussian form
for Pðh; τÞ into Eq. (4), we find that PEW

r ðhÞ has the scaling
form

PEW
r ðhÞ ∼ ffiffiffi

γ
p

r1=4GEWðh ffiffiffi
γ

p
r1=4Þ; ð5Þ

where γ ¼ ffiffiffiffiffi
πν

p
=ðD23=2Þ and GEWðxÞ is given by

GEWðxÞ ¼ 1ffiffiffi
π

p
Z

∞

0

dy

y1=4
exp

�
−y −

x2ffiffiffi
y

p
�
; ð6Þ

which is symmetric in x, GEWð−xÞ ¼ GEWðxÞ, yielding
zero mean, and variance

R
x2GEWðxÞdx ¼ ffiffiffiffiffiffiffiffi

π=4
p

. From the
scaling form in (5), one obtains the scaling of the stationary
width with r asWEW

r ∼ r−1=4 [26]. The integral in (6) can be

expressed in terms of hypergeometric series. In particular,
GEWðxÞ behaves asymptotically as

GEWðxÞ∼
(

1ffiffi
π

p ½Γð3
4
Þ−x2Γð1

4
Þþ8

3

ffiffiffi
π

p jxj3�; x→0;

cjxjexp½−3=22=3jxj4=3�; x→�∞;
ð7Þ

where ΓðxÞ is the gamma function and c is a computable
constant. Interestingly, due to the jxj3 term in (7),GEWðxÞ is
nonanalytic close to x ¼ 0. In the limit x → �∞, the
stretched exponential behavior (7) is significantly different
from a Gaussian tail.
In order to check our prediction (5), we now report on

results of numerical simulations performed for a discrete
one-dimensional periodic interface fHiðtÞgi¼1;2;…;L evolv-
ing in times tn ¼ nΔt, with n an integer and Δt ≪ 1.
Starting from a flat interface, Hið0Þ ¼ 0∀i, the interface at
time step tn is reset to its initial configuration with
probability rΔt, and updated according to the EW dynam-
ics with probability 1 − rΔt. The results shown in Fig. 2
illustrate a very good agreement with theory. Evidently,
PEW
r ðhÞ is highly non-Gaussian.
We now turn to the KPZ case. Here it is known that for

times T micro ≪ t ≪ T�, and for a flat initial profile, the
interface height Hðx; tÞ has a deterministic linear growth
with stochastic t1=3 fluctuations [9]:

Hðx; tÞ ¼ v∞tþ ðΓtÞ1=3χðxÞ: ð8Þ

Here, Γ≡ Γðν; λ; DÞ is a constant, while χ is a time-
independent random variable distributed according to the
TW distribution corresponding to GOE, f1ðχÞ ¼ F1

0ðχÞ,
which can be written explicitly in terms of the Hastings-
McLeod solution of the Painlevé II equation [10]. In
particular, f1ðχÞ has asymmetric non-Gaussian tails
[10,27]: f1ðχÞ ≈ expð−jχj3=24Þ as χ → −∞, while f1ðχÞ ≈
expð−2χ3=2=3Þ as χ → ∞ [28].
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FIG. 2 (color online). EW interface with resetting: Scaling of
the distribution of interface height fluctuations according to
Eq. (5), on linear (a) and log-linear (b) scales. With
D ¼ ν ¼ 1, giving γ ¼ ffiffiffi

π
p

=23=2, the points are simulation data
for L ¼ 214, while solid lines forGEWðxÞ denote analytical results
given by Eq. (6).
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Equation (8) gives

h ¼ ðΓtÞ1=3
�
χ − ð1=LÞ

Z
L

0

dxχðxÞ
�
: ð9Þ

Knowing that f1ðχÞ has a finite mean hχi < 0, it follows
from the law of large numbers that in the limit L → ∞, the
second term on the rhs converges to hχi, so that hhi ¼ 0. In
this case, in the limit τ → ∞, h → ∞, keeping h=τ1=3 fixed,
Pðh; τÞ takes the scaling form

Pðh; τÞ ∼ 1

ðΓτÞ1=3
~f1

�
h

ðΓτÞ1=3
�
; ð10Þ

where ~f1ðxÞ≡ f1ðxþ hχiÞ. From Eq. (4), we see that in
the limit r → 0, PKPZ

r ðhÞ has a universal scaling form, as
follows from the fact that the integral (4) in this limit is
dominated by the limit τ → ∞ where Pðh; τÞ can be
replaced by its scaling form (10) for h → ∞, with
h=τ1=3 fixed. Hence, for r → 0, h → ∞, with hr1=3 fixed,
we get

PKPZ
r ðhÞ ∼ ðrΓ−1Þ1=3GKPZ½ðrΓ−1Þ1=3h�; ð11Þ

where the scaling function GKPZðxÞ is given by

GKPZðxÞ ¼
Z

∞

0

dy
e−y

y1=3
~f1

�
x

y1=3

�
: ð12Þ

In contrast toGEWðxÞ,GKPZðxÞ is not symmetric in x. Since
~f1 has zero mean, it follows that GKPZ has also vanishing
mean, but is still asymmetric, with a varianceR
x2GKPZðxÞdx ≈ 1.44. From (11), the stationary width

scales as WKPZ
r ∼ r−1=3. The asymptotic behaviors of

GKPZðxÞ for x → �∞, obtained from the corresponding
behaviors of ~f1ðxÞ combined with a saddle point analysis,
are

GKPZðxÞ ≈
�
expð−jxj3=2= ffiffiffi

6
p Þ; x → −∞

expð−31=3xÞ; x → þ∞:
ð13Þ

Equation (12) implies that GKPZðxÞ has a nonanalytic
behavior as x → 0: GKPZðxÞ ∼ Aþ Bxþ Cx2 ln x, with
A;B;C being constants. Nonanalyticity at the resetting
value was also observed for the EW interfaces, Eq. (7), and,
hence, is a generic feature of stochastic resetting.
To confirm the scaling form (11), we performed simu-

lations of a discrete one-dimensional periodic interface
fHiðtÞg1≤i≤L evolving in discrete times t. The interface
resets to the initial flat configuration with probability r, and
is updated with probability 1 − r according to the dynamics
of the ballistic deposition model in the KPZ class [1–3]:
Hiðtþ1Þ¼max½Hi−1ðtÞ;HiðtÞþ1;Hiþ1ðtÞ�. Comparison
between simulations and theory in Fig. 3 shows a very
good agreement. The comparison requires computing the

integral in (12) by using the TW GOE distribution with
mean shifted to zero, and scaling the data by a model-
dependent fitting parameter equivalent to Γ in (8). As for
the EW case, PrðhÞ is non-Gaussian.
For a general interface with scaling exponents α; z, and

β ¼ α=z, we now give scaling arguments for PrðhÞ. In the
limit τ → ∞ and h → ∞, with h=τβ fixed, the distribution
Pðh; τÞ has the general scaling form Pðh; τÞ ∼ τ−βgðhτ−βÞ.
In this case, the distribution PrðhÞ is universal in the limit
r → 0 and h → ∞, keeping hrβ fixed [see the discussion
following Eq. (10)]. The associated scaling function is
obtained by using the above form for Pðh; τÞ in Eq. (4),
giving

PrðhÞ ∼ rβGðhrβÞ; GðxÞ ¼
Z

∞

0

dy
yβ

e−yg

�
x
yβ

�
; ð14Þ

implying in particular the behavior of the stationary width
Wr ∼ r−β as r → 0. The EWand KPZ interfaces correspond
to β ¼ 1=4 and β ¼ 1=3 respectively. In the generic case
when gðxÞ ∼ exp ð−axγ�Þ as x → �∞, one obtains by a
saddle point analysis of (14) that GðxÞ ∼ exp ð−bxν�Þ as
x → �∞ with ν� ¼ γ�=ð1þ βγ�Þ. Note also that (14)
implies that GðxÞ is generically nonanalytic at x ¼ 0.
One of the interesting conclusions of our study is the

following. In 1þ 1 dimensions and without resetting, the
stationary height distribution in a finite system is identical
(Gaussian) for both EWand KPZ interfaces, despite the fact
that their dynamics are entirely different. This stationary
state carries no information about the dynamics. However,
with resetting, the resulting NESS is very different in the
two cases even in 1þ 1 dimensions. Thus, the information
about the dynamics is carried forward to the stationary state
via resetting events. Hence, the resetting-induced NESS is
much richer than the ordinary stationary state induced by
the finite system size.
In this Letter, we addressed a very general interesting

question: What happens when a many-body interacting
system evolving under its own stochastic dynamics is
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FIG. 3 (color online). KPZ interface with resetting: Scaling of
the distribution of interface height fluctuations according to
Eq. (11), on linear (a) and log-linear (b) scales. Here, Γ ¼ 1.05,
points are simulation data for L ¼ 215, while solid lines for
GKPZðxÞ denote analytical results given by Eq. (12).
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subject to repeated interruption and recommencement at
random times? Does it lead to a NESS? If so, can one
characterize this state? Related questions came up recently
in biological contexts, where stochastic resetting or switch-
ing between different phenotypic states allows organisms to
survive in randomly fluctuating environments [29–31]. As
a first step towards answering this generic question, we
studied in this work one-dimensional interfaces subject to
stochastic resetting, for which we were able to completely
characterize the NESS analytically. Our analysis, where the
resetting occurs to a flat configuration, is readily extendible
to cases where the resetting configuration is sampled from a
given distribution. Our results may thus serve as a genesis
and a benchmark for future studies on stochastic resetting
of more complex many-particle systems. Moreover, the
results are amenable to possible verification in experiments,
in particular, in the recent ones on liquid crystals [12,13].
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