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We consider a quantum quench in a finite system of length L described by a 1þ 1-dimensional
conformal field theory (CFT), of central charge c, from a state with finite energy density corresponding to
an inverse temperature β ≪ L. For times t such that l=2 < t < ðL − lÞ=2 the reduced density matrix of a
subsystem of length l is exponentially close to a thermal density matrix. We compute exactly the overlapF
of the state at time t with the initial state and show that in general it is exponentially suppressed at large
L=β. However, for minimal models with c < 1 (more generally, rational CFTs), at times which are integer
multiples of L=2 (for periodic boundary conditions, L for open boundary conditions) there are (in general,
partial) revivals at which F is Oð1Þ, leading to an eventual complete revival with F ¼ 1. There is also
interesting structure at all rational values of t=L, related to properties of the CFT under modular
transformations. At early times t ≪ ðLβÞ1=2 there is a universal decay F ∼ expð−ðπc=3ÞLt2=βðβ2 þ 4t2ÞÞ.
The effect of an irrelevant nonintegrable perturbation of the CFT is to progressively broaden each revival at
t ¼ nL=2 by an amount Oðn1=2Þ.
DOI: 10.1103/PhysRevLett.112.220401 PACS numbers: 05.30.Rt, 04.70.Dy, 11.25.Hf

The subject of quantum quenches, the time evolution of
an extended system, described by a Hamiltonian H, from a
pure state jψ0i that is not an eigenstate (usually the ground
state of some other Hamiltonian H0), has been of great
interest in recent years, both for theoretical reasons and the
fact that such coherent evolution may be experimentally
realized in ultracold atoms. Important theoretical questions
are whether, and in what sense, such systems reach a
stationary state and to what extent this can be described by
a thermal density matrix. These are difficult to address
except in theories which are in some way exactly solvable
[1,2] or in the AdS/CFT correspondence, when thermal-
ization has been associated with the formation of a black
hole in the bulk [3].
In Ref. [1], the problem was studied for the case whenH

corresponds to a 1þ 1-dimensional conformal field theory
(CFT) and jψ0i is a particular kind of initial state with
short-range correlations and entanglement. It was found
that correlation functions of local observables within a
subsystem of length l become stationary after a time ≈ l=2
(in units where the speed of propagation is unity), after
which they are described by a thermal ensemble at a
temperature corresponding to the conserved energy density.
At the same time, the entanglement entropy of the sub-
system with its complement becomes equal to the Gibbs
entropy at the same temperature. These results may be
explained within a simple physical picture of pairs of left-
and right-moving quasiparticles, initially entangled over a
length scale ∼β, being emitted at t ¼ 0 and thereafter
moving semiclassically. This general picture has been
confirmed in other integrable lattice models, although in

these cases the stationary state is a generalized Gibbs
ensemble (GGE) rather than a purely thermal state [4].
These considerations have largely been made for the

thermodynamic limit, when the total length L of the system
is first taken to infinity. In fact the results of Ref. [1] can be
straightforwardly extended [5] to the case of finite L as long
as l=2 < t < ðL − lÞ=2 (for periodic boundary condi-
tions.) However, for a finite system, the quasiparticle
picture also implies quantum recurrence. In a periodic
system, an oppositely moving pair of particles will meet
again at times that are integer multiples of L=2, and this, in
the absence of accidental destructive interference, should
lead to a revival of the initial state. In open systems with
reflecting boundaries, such revivals should occur at multi-
ples of L. In some integrable quantum spin chains [6] and
Luttinger liquids [7], such revivals in the expectation values
of local observables have indeed been observed and also in
the entanglement entropy for a free Dirac fermion [8].
In this Letter, we describe the extension of the methods

developed in Ref. [1] to the case of finite systems. We
compute exactly the return amplitude or fidelity F ðtÞ ¼
jhψ0je−iHtjψ0ij of the quantum state at time twith the initial
state, by relating this quantity to the partition function of
the CFT on an annulus (or rectangle for open boundary
conditions) continued to complex values of its modulus or
aspect ratio. Since much is known about these partition
functions (in some cases completely) we are able to obtain a
number of analytic results. We note in passing that in recent
papers [9] a similar quantity has been studied as a function
of complex t for various spin chains, and its singularities
interpreted as “phase transitions” at finite t. For the case of
a CFT studied here, the singularities we find occur close to
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every rational value of t=L and are simply related to full or
partial revivals of the initial state.
Formulation of the problem.—In principle, the initial

state jψ0i should be the ground state of a perturbed
Hamiltonian H þ λ

R
Φdx, where λ is a relevant coupling

to a local operator Φ which gaps the system, leading to a
finite correlation length that we assume is always ≪ L. In
practice, this is too difficult, and instead we assume [1] that
jψ0i is close in the renormalization group sense to some
conformal boundary state jBi. However, since such states
are scale invariant (and not even normalizable), in order to
introduce a finite correlation length we take instead
jψ0i ∝ e−ðβ=4ÞHjBi. This somewhat arbitrary choice was
motivated on phenomenological grounds in Ref. [1], but a
better argument is to point out that H ∝

R
Tttdx, where Ttt

is the local stress tensor, is (often the most leading) an
irrelevant operator that acts on the boundary state. β, which
initially appears here only as a coupling constant, is
in fact chosen so that the mean energy hψ0jHjψ0i ¼
πcL=24ðβ=2Þ2 is the same as that in a thermal state
πcL=6β2 [10]. The effect of modifying the initial state
by adding other irrelevant operators may be argued to lead
to the stationary state being described by a GGE rather than
a purely thermal one [5]. The results, although obtained in a
CFTwith this particular form of the initial state, should also
apply more generally to quenches to the critical point in
lattice systems in which predominantly only the low-lying
quasiparticle modes are excited; that is, the effective
temperature is much less than the bandwidth.
Return amplitude.—With the above choice for jψ0i, the

return amplitude is

F ¼
���� hBje−ð1=4ÞβHe−itHe−ð1=4ÞβHjBihBje−ð1=4ÞβHe−ð1=4ÞβHjBi

���� ¼
����ZAð12 β þ it; LÞ

ZAð12 β; LÞ

����;
ð1Þ

where ZAðW;LÞ is the partition function of the CFT on an
annulus of width W and circumference L, with conformal
boundary conditions corresponding to B on both edges. A
great deal is known about the form of ZA for a CFT [11],

ZAðW;LÞ ¼
X
Δ
jBΔj2χΔðqÞ ¼

X
~Δ

n ~Δ
BBχ ~Δð ~qÞ; ð2Þ

where q≡ e2πiτ ¼ e−4πW=L, ~q ¼ e−2πi=τ ¼ e−πL=W , and Δ,
~Δ label the highest weights of Virasoro representations that
propagate across and around the annulus, respectively.
χΔðqÞ ¼ q−c=24þΔP∞

N¼0 dNq
N are the characters of these

representations, where dN is their degeneracy at level N.
The coefficients BΔ are the overlaps between the physical
states B and the Ishibashi states [12]. The non-negative
integers n ~Δ

BB, which for a rational CFT are given by the
fusion rules, give the number of states with highest weight
~Δ allowed to propagate around the annulus with the given
boundary conditions. We assume n0BB ¼ 1. For minimal

CFTs with c < 1, there is a finite number of allowed values
of Δ and ~Δ given by the Kac formula. For more general
rational CFTs, the number of different values (mod Z) is
still finite, but for a general CFTwith c > 1 it is infinite, the
mean density growing exponentially with

ffiffiffiffi
Δ

p
[13].

The main properties of the characters that we need is that
they are holomorphic in the upper half τ plane and that
they transform linearly under a representation of the
modular group SLð2;ZÞ, generated by S∶ τ → −1=τ and
T∶ τ → τ þ 1. The first property ensures that the continu-
ation to τ ¼ ð−2tþ iβÞ=L implied in Eq. (1) makes sense,
and the second will allow us to relate the values of F ðtÞ at
different times to those back in the principal domain where
τ → i∞ and the series are rapidly convergent.
Universal short time behavior.—Note that

~q¼expð−2πLðβ−2itÞ=ðβ2þ4t2ÞÞ. For t2 ≪ Lβ, j ~qj ≪ 1,
and so the sum on the rhs of Eq. (2) is dominated by its first
term ~q−c=24. After normalizing by the denominator in
Eq. (1), this gives the first main result

F ðtÞ ∼ expð−ðπc=3ÞLt2=βðβ2 þ 4t2ÞÞð1þOðj ~qjαÞÞ; ð3Þ

which shows a decay, initially faster than exponential, to a
plateau value that is, however, exponentially small in L=β.
The power α in the correction term is the smallest nonzero
value of ~Δ such that n ~Δ

BB ≥ 1 or 2. We stress that this result
should hold for any CFT.
Revivals.—t ¼ nL=2 corresponds to τ ≈ −n, and we

may then relate the value of ZA at this point to that near
τ ¼ 0 and then as τ → i∞ using the transformation proper-
ties of the characters. This gives, in the limit L=β → ∞,

F ðnL=2Þ ¼
X
Δ
jBΔj2ðTnSÞΔ;0 ¼

X
~Δ

n ~Δ
BBðSTnSÞ ~Δ;0;

where S and T are the corresponding matrices according to
which the characters transform. It follows that as long as
these are finite dimensional (as for the minimal models or
more generally a rational CFT), the value of F ðtÞ at t ¼
nL=2 is, therefore, finite (although, as we shall see below, it
may accidentally vanish). At times within ðLβÞ1=2 of this
there is a similar decay to that in Eq. (3) with t replaced by
jt − nL=2j. If M is the lowest common denominator of all
the fΔg, then, since all the energy gaps of H (of even
parity) are quantized in units of 4π=LM, there must always
be complete revival (F ¼ 1) at multiples of t ¼ ML=2. For
the minimal models, the Kac formula implies that in
M ∼ 24=ð1 − cÞ and, therefore, in general the time for a
complete revival diverges as c → 1−. We also find (numeri-
cally) that in the same limit the return amplitude at any
fixed revival time goes to zero exponentially fast. A similar
result should hold for other sequences of rational CFTs
with a maximal value of c.
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Structure at rational values of t=L.—Although finite
values of F occur only at integer values of 2t=L, in fact,
there is interesting universal structure near every rational
value. This is because the characters are singular at τ ¼ 0,
and the modular group maps this to every rational point
τ ¼ n=m on the real line. This is mapped to τ ¼ 0 by
applying STn1STn2…, where (n1; n2;…) are the integers
appearing in the continued fraction expansion of n=m.
However, the nearby point τ ¼ n=mþ iβ=L is mapped to
τ ≈ im2ðβ=LÞ, and so we find, after normalizing with the
denominator of Eq. (1),

F ðnL=2mÞ ∝ ðe−2πL=βÞðc=24Þð1−1=m2Þ: ð4Þ

Once again, at nearby values of t, this is modified in a
manner similar to Eq. (3). A more careful analysis also
shows that the correction terms may be neglected only for
m ≪ ðL=βÞ1=2 so that for a fixed β=L the structure near
only a finite number of rational values will be evident. This
result, however, shows that if we define a “large deviation
function” −limL=β→∞ðβ=2πLÞ logF ðtÞ, it is a sum of delta
functions of strength ∝ 1=m2 at each rational value n=m of
2t=L, on top of the uniform plateau value c=24. This
structure may be understood in the quasiparticle picture as
being due to the simultaneous emission at t ¼ 0 of
entangled pairs of particles separated by distances that
are integer divisors of L. An example is illustrated in Fig. 1.
Example: Ising CFT.—Many of these features are

present in the simplest minimal CFT, corresponding to
the scaling limit of the Ising model with c ¼ 1

2
. There are

three distinct conformal boundary states, corresponding to
the scaling limits of free and fixed boundary conditions on
the Ising spins. In the last two cases [11], corresponding to
a quench in the transverse field Ising model to the critical
point from the ground state in a large longitudinal field or
from the ordered phase,

Zfixed
A ¼ 1

2
χ0ðqÞ þ

1

2
χ1=2ðqÞ þ

1ffiffiffi
2

p χ1=16ðqÞ ¼ χ0ð ~qÞ:

At the recurrence times t ¼ nL=2, we find by applying Tn

and then S

Zfixed
A ¼ 1

2
χ0ðq0Þ þ

1

2
eiπnχ1=2ðq0Þ þ

1ffiffiffi
2

p eiπn=8χ1=16ðqÞ

∼
�
1

4
ð1þ eiπnÞ þ 1

2
eiπn=8

�
χ0ð ~q0Þ;

where q0 ¼ e−2πβ=L, ~q0 ¼ e−2πL=β, and we have retained
only the dominant term in the second step. For n odd,
this gives F ðnL=2Þ ¼ 1

2
, whereas for n even we get

j cosðπn=16Þj. There is complete revival at t ¼ 8L, whereas
at t ¼ 4L the coefficient vanishes, leaving a much smaller
term Oððe−2πL=βÞ1=16Þ.
On the other hand, for free boundary conditions [11],

corresponding to a quench from the disordered phase in
zero longitudinal field,

Zfree
A ¼ χ0ðqÞ þ χ1=2ðqÞ ¼ χ0ð ~qÞ þ χ1=2ð ~qÞ:

At t ¼ nL=2, we get χ0ðq0Þ þ ð−1Þnχ1=2ðq0Þ, so for n
even there is complete revival, but for odd n,
χ0 − χ1=2 ¼

ffiffiffi
2

p
χ1=16ð ~q0Þ, so again the revival is sup-

pressed. The above expression may also be written as
Zfree
A ¼ q−1=48

Q∞
k¼0ð1þ qkþ1=2Þ, which explicitly shows

the structure near rational values of 2t=L. This is illustrated
in Figs. 2 and 3.
Open boundary conditions.—Suppose now that the

system is open with conformal boundary conditions B0
at x ¼ �L=2. (We may also introduce an extrapolation
length l0 in order to smooth out this condition, but this only
has the effect of changing L to Lþ 2l0 and we shall ignore
it.) Then ZA in Eq. (1) is replaced by ZBB0, the partition

Lx

t

0

FIG. 1. Quasiparticle configuration leading to the feature in the
return amplitude at t ¼ L=4 for periodic boundary conditions.
The pairs emitted a distance L=2 apart must be correlated, leading
to an exponential suppression.
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FIG. 2 (color online). Log of the return amplitude for the Ising
CFT starting from a disordered state for 0 < 2t=L < 2, with
πβ=L ¼ 0.1. The vertical axis has been shifted so as to expose the
mean plateau behavior. This shows the initial Gaussian decay and
revival at t ¼ L. The negative peak at t ¼ L=2 is due to
destructive interference between two kinds of quasiparticles.
Smaller Gaussian peaks are seen at rational values with small
denominators. The positive peaks are mapped by the modular
group to the initial peak, and the negative ones are mapped to the
feature at 2t=L ¼ 1.
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function for a W × L rectangle. In the special case when
B ¼ B0, the CFT partition function is known exactly [14],

ZBBðW;LÞ ¼ Lc=4ηðqÞ−c=2 ¼ Wc=4ηð ~qÞ−c=2;

where now q ¼ e−2πW=L, ~q ¼ e−2πL=W , and ηðqÞ ¼
q1=24

Q∞
n¼1ð1 − qnÞ. Setting W ¼ 1

2
β þ it we see that

F ðtÞ now recurs with period L. This exact revival may
be traced to the fact that, although the spatial boundary
conditions may allow other states corresponding to
Virasoro representations with Δ ≠ 0, the initial condition
selects only those which are descendants of the identity. An
example for the Ising CFT would be to consider a quench
from the disordered phase in a system with free boundary
conditions on the Ising spins at x ¼ � 1

2
L. However, the

result holds for any CFT, whether it is rational or not. The
same property, of exact revival at multiples of π=L, will
also occur irrespective of the initial state if B0 is such that
nΔB0B0 ¼ δΔ;0. Such boundary conditions are known to exist
for all the minimal models, for example, fixed boundary
spins in the Ising model. The modular properties of ηðqÞ
imply that there is structure near all rational multiples of
t=L, similar to the case of periodic boundary conditions.
One-point functions.—Analytic results for the one-point

function of a local operator Φ in a finite annulus or
rectangle are available in only a few cases [15]. The
simplest is that discussed above, a W × L rectangle with
the same conformal boundary condition on each edge.
Since this geometry is conformally equivalent to the upper
half plane, where the one-point function decays as a power
ΔΦ of the distance from the real axis, it follows that in the
rectangle hΦðτ; xÞi is a completely universal function of the
coordinates and (W, L), for any CFT. The simplest and
most useful form is then found by taking Φ to be the
exponential of a massless scalar field, for which the method
of images may be used. The result, after continuing to real
times and taking x to be at the midpoint for simplicity, is

hΦðt; 0Þi ∝
Y∞

m¼−∞

"
chð2πβ ðt − ðmþ 1

2
ÞLÞÞchð2πβ mLÞ

chð2πβ ðt −mLÞÞchð2πβ ððmþ 1
2
ÞLÞÞ

#ΔΦ

:

This shows an exponential decrease, as for the infinite
system, until t ≈ 1

2
L, followed by a symmetrical recovery to

the initial value at t ¼ L. Note that there is no signal of the
fine structure that occurs in the overlap at rational t=L, but
the quasiparticle picture suggests that this should show up
in the higher-point functions.
Nonintegrable perturbations.—The simple picture of

partial and exact revivals at multiples of L=2 (in a periodic
system) in a pure CFT is clearly a consequence of the
integrable structure imposed by the Virasoro algebra. In any
realistic critical system, H will contain irrelevant terms
that in general spoil the integrability. In general, their
effect is very difficult to quantify. However, some progress
is possible for an irrelevant perturbation of the form
δH ¼ λ

R
TT̄dx, which for many systems is the most

important scalar irrelevant operator. In a periodic system
of size L, in first-order perturbation theory it causes a shift
∼ðλ=L3Þð−c=24þ ΔÞ2 in a level whose unperturbed
energy is ∼ð4π=LÞð−c=24þ ΔÞ, but to this order, the
degeneracies remain. Thus, the characters χΔðqÞ appearing
in the first expression in Eq. (2) are replaced by

χΔðqÞ →
X
N

dNq−ðc=24ÞþΔþNþðλ=L2Þ½−ðc=24ÞþΔþN�2 :

Writing the quadratic term as a Gaussian integral
∝
R
dξqξ

2þi½ðλ1=2Þ=2L�ξ½ð−ðc=24ÞþΔþN�, we see that we may take
the expressions for F evaluated within the pure CFT
at times tð1þOðλ1=2ξ=LÞÞ and integrate them against
qξ

2 ∼ e−2πðβþ2itÞξ2=L. This will lead to an Oðn1=2λ1=2Þ
broadening of the revival peak at t ¼ nL=2. (There is also
a ξ-dependent shift in β, which makes the peaks asym-
metrical.) At Oðλ2Þ the degeneracies are split, leading to a
new time scale OðL5=λ2Þ beyond which we would expect
to see complete decoherence.
Discussion.—1þ 1-dimensional CFTs in a finite system

have spectral gaps that (at zero momentum, in periodic
systems) are integer multiples of 4π=L, which naturally
leads to revivals at times which are multiples of L=2.
However, the spectrum is purely of this form only for very
special initial states (of the Ishibashi form, and in general
these are unphysical.) For minimal models (more generally,
rational CFTs), the spectrum still contains only a finite
number of rational multiples of 4π=L, leading to partial
revivals and then full revival at some multiple M of L=2.
This statement is true irrespective of the detailed form of
the initial state, although the detailed results for the
amplitudes of the partial revivals presented here do depend
on this. For irrational CFTs, on the other hand, an infinite
number of such states is needed to form the physical states.
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FIG. 3 (color online). Same as above with πβ=L ¼ 0.01. Now
there is structure at more rational values, and we see the predicted
1=m2 dependence of the heights of nearby peaks with denom-
inators m.
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In this case, it is unlikely that a complete revival is possible,
but this leaves open the question of whether finite partial
revivals may occur. The behavior of the minimal models as
c → 1− suggests that this is not the case. For holographic
CFTs, this is consistent with the idea that a sufficiently
energetic collapsing shell of matter in AdS3 will irrevers-
ibly form a black hole [16]. From this point of view, our
example of open boundary conditions, where there is exact
periodicity for any CFT, must always correspond to the
subcritical case where no black hole forms. We note that in
2þ 1 dimensions partial revivals have been observed in
simulations [17].
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