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Using a renormalization group approach, we solve the time evolution of random Ising spin chains with
generic interactions starting from initial states of arbitrary energy. As a function of the Hamiltonian
parameters, the system is tuned through a dynamical transition, similar to the ground-state critical point, at
which the local spin correlations establish true long-range temporal order. In the state with a dominant
transverse field, a spin that starts in an up state loses its orientation with time, while in the “ordered” state it
never does. As in ground-state quantum phase transitions, the dynamical transition has unique signatures in
the entanglement properties of the system. When the system is initialized in a product state, the
entanglement entropy grows as logðtÞ in the two “phases,” while at the critical point it grows as logαðtÞ,
with α a universal number. This universal entanglement growth requires generic (“integrability breaking”)
interactions to be added to the pure transverse field Ising model.
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Quantum systems can exhibit a great deal of universality
at low temperatures due to the structure of ground states
and of the critical points separating different states. On the
other hand, the time evolution of the same systems, starting
from generic states, involves all energies, and it is therefore
thought to be much harder, if at all possible, to have sharp
transitions in the dynamics. Moreover, closed systems
evolving with Hamiltonian dynamics are commonly
thought to settle to a thermal equilibrium consistent with
the energy density in the initial state. If this is the case, then
any sharp transition associated with the long time behavior
of observables must correspond to a classical thermal phase
transitions in the established thermal ensemble.
But this reasoning can fail in quantum systems with

strong randomness. In his original paper on localization,
Anderson conjectured that closed systems of interacting
particles or spins with sufficiently strong disorder would
fail to equilibrate [1]. Recently, Basko et al. [2] gave new
arguments to revive this idea of many-body localization,
which has since received further support from theory and
numerics [3–7]. An important point is that localized
eigenstates, even at macroscopic energies, are akin to
quantum ground states in their entanglement properties
[8–11]. In particular, it was pointed out that localized
eigenstates can sustain different types of quantum order
that would not occur in a finite temperature equilibrium
ensemble [8].
In this Letter we consider the nature of phase transitions

between distinct states of the dynamics. We show that by
changing the parameters it is possible to drive such systems
through a universal singularity in the time evolution of
observables. The sharpness of the transitions and the
distinct long time limit of the local order parameter in
the two phases are due to many-body localization.

We demonstrate these properties in a quantum Ising spin
chain with generic interactions,

H ¼
X
i

½Jzi Szi Sziþ1 þ hiSxi þ Jxi S
x
i S

x
iþ1 þ…�: (1)

Here Jzi , hi, and Jxi are uncorrelated random variables
and … represents other possible interaction terms that
respect the Z2 symmetry of the model. Without the
interaction Jxi , which we take to be small (Jxi ≪ Jzi , hi),
the Hamiltonian can be mapped to a system of noninter-
acting fermions. For simplicity, we take the distributions of
coupling constants to be symmetric around zero.
The transverse field Ising model (1) undergoes a ground-

state quantum phase transition controlled by an infinite
randomness fixed point [12]. The transition separates
between a quantum paramagnet, when the transverse field
is dominant, and a spin ordered state, when the Ising
coupling Jz is dominant. Recently, it was pointed out that
this transition can also occur in eigenstates with arbitrarily
high energy, provided that the system is in the many-body
localized phase [8]. However, it is practically impossible to
prepare and measure a system in an exact high energy
eigenstate. Even if we had a universal quantum computer it
is not clear that it could efficiently prepare a generic
eigenstate of a prescribed Hamiltonian.
Here we develop a theory of the nonequilibrium tran-

sition, focusing on the universal singular effects it has on
the time evolution of the system starting from simple initial
states of arbitrarily high energy and in the presence of
generic interactions. Specifically, we take the initial states
to be random Ising configurations of the spins in the Sz

basis: jψ ini ¼ j↑↑↓↑;…↓↓↑i. The theoretical analysis
relies on the strong disorder real space renormalization
group approach (SDRG) [13,14], which we recently
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extended to address the quantum time evolution of random
systems [7]. The properties of the transition are elucidated
by tracking the time evolution of two quantities: spin
correlations and entanglement entropy.
First, we show that the spin autocorrelation function

CzðtÞ ¼ hψ injSzi ðtÞSzi ð0Þjψ ini decays to zero in the para-
magnetic phase, whereas it saturates to a positive constant
in the spin (glass) ordered phase. Second, the growth of
entanglement entropy between two halves of the system
with time is enhanced at the critical point. Whereas in the
two phases the entanglement grows asymptotically as
logðtÞ, it grows as ½logðtÞ�α at the critical point, with
α > 1 a universal exponent. Enhanced entanglement is a
hallmark of ground-state quantum criticality. Here the
concept is extended to the dynamics at high energy density.
Renormalization group scheme.—The approach we use

to describe the time evolution of the random chain at long
times was presented in Ref. [7]. It extends the SDRG
method, originally formulated to focus on long distance
ground-state correlations [13].
Let us review the basic idea of the scheme. The quantum

evolution at the shortest times is governed by the largest
couplings in the Hamiltonian, which we define as the cutoff
scale Ω. Spins affected by much smaller couplings are
essentially frozen on that time scale. The dynamics of these
slow degrees of freedom at longer times can be described
by an effective evolution operator, from which the high
frequency scale Ω has been eliminated. Technically, we
derive the effective evolution operator perturbatively up to
second order in the interaction between the strongly
coupled cluster to its neighbors. Repeating the scheme
leads to a sequence of effective Hamiltonians HðΩÞ (in the
interaction picture) with coupling constant distributions,
which flow with Ω. The Hamiltonian HðΩÞ governs the
time evolution of the slow degrees of freedom on time
scales t≳ 1=Ω. This perturbative scheme becomes better
controlled at long times if the flow is toward strong
randomness, i.e., wide distributions of coupling constants.
The two types of renormalization group (RG) steps we

need to consider are (i) the case where the largest coupling
is Jzi ¼ Ω and (ii) the case of a large transverse field
hi ¼ Ω. In case (i) the two spins coupled by the large Ising
interaction can only flip collectively as a slow degree of
freedom, and we therefore join them to make a new
effective spin. The effective Hamiltonian connecting the
new degree of freedom Sαn to the rest of the system is

Heff ¼
�
η
h1h2
Ω

þ Jx12

�
Sxn þ ηJLS

z
LS

z
n þ ηJRS

z
RS

z
n

þ
�
JxLh1
ηΩ

SxL þ JxRh2
ηΩ

SxR þ JxLJ
x
R

ηΩ
SxLS

x
R

�
Sxn; (2)

where we denoted the constituent spins of the new effective
spin by 1,2 and η ¼ 1ð−1Þ if spins 1 and 2 are aligned (anti-
aligned). Because of the random sign of couplings at the

outset, the signs of the generated interaction will be
unimportant. In addition to the above, the transverse fields
on the left and right spins SL;R are slightly renormal-
ized: hL;R → hL;R þ ηJxL;Rh1;2=Ω.
In case (ii) we have a large transverse field hn ¼ Ω on

one of the spins, which we denote by n. The effective
Hamiltonian for the slow evolution of the spins in its
vicinity is

Heff ¼
2JzLJ

z
R

Ω
SzLS

x
nS

z
R þ

X
α¼R;L

ðJxαSxn þ hαÞSxα: (3)

Since Sxn commutes with Heff we can take it as a number
� 1

2
, which depends on the spin projection along x̂. The spin

n is eliminated at the expense of having a different effective
Hamiltonian H�

eff operating on initial states with the spin n
oriented along the positive or negative x̂ axis. This
Hamiltonian includes an Ising interaction between the left
and right neighbors of n: ~Jz ¼ �ðJzLJzR=ΩÞ and a transverse
field ~hL;R ¼ hL;R � 1

2
JxL;R.

Note that in case (ii), at this level of approximation, no Jx

term is produced between the left and right neighbors.
However, such interactions are produced in the more
generic Hamiltonian that emerges at intermediate scales
after the RG has progressed for some time. Recall that type
(i) decimations produce three-spin interaction terms of the
form Sxi−1S

x
i S

x
iþ1. This additional term, in turn, may give

rise to a four-spin interaction term. In fact, as we show in
Ref. [15], all strings of n spin interactions of the form
Sx1S

x
2…Sxn are produced at some stage of the RG, with

coefficients that decay exponentially with the length of the
string. The most important effect of the strings is to produce
an effective Jx interaction ðJxn ¼ JxLJ

x
R=2ΩÞSxLSxR upon

decimating a site at the center of a three-spin interaction.
RG flow and phase diagram.—Depending on the dis-

tribution of coupling constants in the model (1), the flow
can take one of two directions, leading to distinct dynamical
phases. If the disorder in the Ising interaction is dominant, an
increasing number of sites will be joined by way of step (i)
into an ever-growing cluster (Fig. 1), which would be
ultimately frozen in an infinite system. This is the “glass
phase.” If, on the other hand, the transverse field is dominant,
then the typical cluster size is bounded, and at long times
essentially all sites will be eliminated by process (ii). This is
the “paramagnetic phase.”
We obtain the flow of the coupling distributions numeri-

cally by operating the RG rules on a long chain of 106 sites
(see Ref. [15]). Crucially, we find that the added interaction

FIG. 1 (color online). Schematic depiction of the spin glass
phase. An infinite cluster is formed in the course renormalization.
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terms fall off faster with the RG scale Γ ¼ lnðΩ0=ΩÞ than
do the typical transverse field htyp and Ising coupling Jztyp.
This, together with the fact that Γ corresponds to the
logarithmic time scale of the evolution, implies that the
asymptotic scaling at long times near the critical point
approaches the scaling of the random transverse field Ising
model in the ground state [14]. This flow is illustrated in
Fig. 2(a), where the different flow lines are parametrized by
the tuning parameter

2Δ ¼ hlnðΩ=hÞi−1 − hlnðΩ=JzÞi−1 ≡ ln ðhtyp=JztypÞ: (4)

For Δ > 0 and Δ < 0 the system flows to the paramagnetic
and glass dynamical states, respectively. Δ ¼ 0 is the
critical flow line, which ends on the infinite randomness
fixed point at the origin.
Figure 2(b) shows that the typical interaction Jxtyp ≡

Ω exp ð−hlnðΩ=JxÞiÞ falls off as expð−aΓϕÞ at criticality,
with ϕ ¼ ð1þ ffiffiffi

5
p Þ=2 the golden ratio. This is compared to

the slower decay as expð−a0ΓÞ of the typical Ising coupling
Jz and transverse field h. As a result, the interaction Jx does
not feed back onto the flow of the other coupling constants.
But in spite of being irrelevant, we will show that in the
course of their flow the interactions do have a dramatic
effect on the growth of the entanglement entropy.
Another dangerous effect of the interaction, particular to

the dynamical systems, is that they can potentially desta-
bilize the localized state by mediating resonances between
modes that oscillate with similar frequencies Ω� δΩ at
remote sites on the chain. Though this process is not
included in the SDRG, we argued in Ref. [7] that for
sufficiently strong disorder such resonances do not pro-
liferate and are therefore irrelevant. This is because the
energy mismatch of potential resonant sites found within a

range L scales as 1=L, whereas the effective interaction
between such sites is suppressed as e−L=ξ.
Spin decay.—An important question about the dynamics

is how the local spin orientation, fixed in the initial state, is
disordered at long times. This is quantified by the spin
autocorrelation function CzðtÞ ¼ hψ injSzi ðtÞSzi ð0Þjψ ini ¼
hSzi ðtÞihSzi ð0Þi (since jψ ini is assumed to be an eigenstate
of Szi ) or its disorder average CzðtÞ.
Within the SDRG scheme described above, a spin loses

its orientation when the cluster it belongs to is decimated
due to a large transverse field. Therefore, the average
moment of a spin is directly related to the probability that it
will not be decimated by the time of measurement:
CzðtÞ ∼ 1

2
ðNr=N0Þ, where Nr is the number of original

spins, which belong to undecimated clusters, and N0 is the
total number of spins.
Exactly the same ratio enters the calculation of the

ground-state magnetization density in the standard SDRG
scheme [14,16]. Hence, we can read off the results and
translate them to the time evolution. In the paramagnetic
Griffiths phase leading up to the critical point, we have
Nr=N0 ∼ Γ expð−2ΔΓÞ (see also Ref. [17]). In our case
Γ ¼ lnðΩ0tÞ and we see that the spin autocorrelation
decays as CzðtÞ ∼ lnðΩ0tÞ=ðΩ0tÞ2Δ [18] At criticality
(Δ ¼ 0), the power law reverts to the logarithmic decay
CzðtÞ ∼ ½1= lnðΩ0tÞ�2−ϕ. Finally, in the “glass” phase,
dominated by Jz, one cluster grows to include a finite
fraction of the original spins and is never decimated.
Hence, in an infinite system the autocorrelation function
saturates to a positive constant at long times, which serves
as the order parameter of the glass state. Using the analogy
with the ground-state magnetization density, we can deter-
mine the onset of the order parameter at the critical point
as Czð∞Þ ∼ jΔj2−ϕ.
Growth of entanglement entropy.—While the initial state

is a nonentangled product state, correlations between the
two halves are generated in the time evolution. This leads to
growth of the entanglement entropy S ¼ −trρAlog2ρA
between two halves of the chain, A and B.
The main contribution to the entanglement growth (when

Jx ≠ 0) comes from decimation of a site with a large
transverse field. Entanglement is generated because the
effective Hamiltonian acting on the nearby spins, H�

eff ,
depends on the orientation of the decimated spin along the
x axis. Since the spin initially points along z, and therefore
a superposition of projections on x, the two distinct
evolutions occur in parallel, thus producing entanglement
after a delay time tent ∼ 1=Jxtyp, set by Hþ

eff −H−
eff.

Let us compute the contribution of this process to the
growth of entanglement entropy. A spin decimated at time
t1 near the AB interface entangles with its neighbors by the
time t ¼ t1 þ tent. The space between the decimated spin
and its neighbors at t1 contains many spins that had already
been decimated. These spins are associated with a smaller

FIG. 2 (color online). (a) RG flow near the dynamical tran-
sition. (b) The flow of the averaged scaling variables with Γ at
criticality. The interaction term hlnðΩ=JxÞi scales asymptotically
as Γϕ, while the other variables hlnðΩ=hÞi and hlnðΩ0=JzÞi scale
as Γ. (c) Decay of spin correlations and entanglement entropy
growth in the two phases and the dynamical critical point.
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delay time and, by the observation time t, must also be
fully entangled with each other. Hence, the entanglement
entropy at time t is the number of such spins
SðtÞ ∼ lΓ1

phðΓ1Þ. Here lΓ1
is the separation between the

surviving spins at that stage of the RG in units of the
original spins and phðΓ1Þ is the fraction of those spins that
had been decimated by a large h. At long times ph is simply
a constant equal to 1=2 at criticality (see Ref. [15] for
details). The time-length scaling lðΓÞ is well known from
ground-state results [14]. But we must find the relation
between Γ1 and Γ.
The fact that Jx decays rapidly in time ensures that

tentðt1Þ ¼ 1=Jxtypðt1Þ ≫ t1. Therefore, t ≈ tentðt1Þ or, equiv-
alently, Γ ≈ Γ1 þ hlnðΩ1=JxÞi ≈ hlnðΩ1=JxÞi. The precise
relation between Γ1 and Γ now depends on whether or not
we are at the critical point.
At criticality we found [see Fig. 2(b)] that hlnðΩ1=JxÞi ∼

Γϕ
1 and therefore Γ1 ∼ Γ1=ϕ. Plugging this into the expres-

sion for the entropy, we have

S ¼ 1

2
lΓ1

∼
1

2
Γ2
1 ∼

1

2
Γ2=ϕ ∼

1

2
ðln tÞ2=ϕ: (5)

The universality stems from the fact that the exponent
depends only on the universal asymptotic flow at long
times and not on the precise initial distribution and on how
it is renormalized at short times. Strictly speaking, our
result pertains to models in the symmetry class of (1).
However, as suggested by the result of [7] concerning a
model with different symmetry [Uð1Þ], entanglement
growth as ðln tÞ2=ϕ may be a more general characteristic
of dynamical infinite randomness fixed points.
Close to the transition, the system will display the

critical behavior up to the crossover time scale t� ¼
Ω−1

0 expðjΔj−1Þ [14]. To derive the entanglement growth
at later times, we note that the interactions scale as
hlnðΩ1=JxÞi ∼ e2jΔjΓ1 in both phases (see Ref. [15]). On
the other hand, we found hlnðΩ1=JxÞi ≈ Γ and therefore
2jΔjΓ1 ¼ lnΓ. The length scale grows with the same
exponential rate [16] lΓ1

∼ e2jΔjΓ1 ¼ Γ. Substituting into
the expression for the entanglement entropy, we have

SΔ≠0Jx≠0 ¼ phlΓ1
∼ phΓ ∼ ph ln t: (6)

In both cases the interaction-induced growth of the entan-
glement entropy begins after a delay td ≈ 1=Jx0, where J

x
0 is

the typical value of the interaction at the outset.
The logarithmic growth of entanglement in generic

localized phases has been observed in numerical simula-
tions [5,6,19]. A heuristic argument for this behavior was
given in Refs. [20,21].
In a system of length L the entanglement entropy, both

on and off criticality, saturates to a value linear in L:
SðtÞ ¼ phlΓ1

→ phL. However, this extensive entropy does
not imply thermalization of the system. Since ph, the

fraction of large field decimations, is less than 1, the
saturation value of the entropy is smaller than the expected
thermal entropy of 1 unit (log2 2) per spin (for generic
initial states with energy in the middle of the many-body
spectrum). In fact, ph increases monotonically as the
system is tuned from the glass to the “paramagnetic” phase.
Discussion.—The absence of thermalization can be

associated with the emergence of local conserved quan-
tities, whose value is constrained by the initial state. In our
case these would be operators that involve Szi since the
spins have a well-defined z projection at the outset.
The fact that hSzi i does not decay to zero in the glass

phase implies that this operator is closely related to a true
conserved quantity. Specifically, on sites i that will
eventually join the infinite cluster, Szi has overlap of order
1 with a conserved quantity ~Szi. The form of these
operators, consistent with scaling near the critical point,
is ~Szi ¼ ASzi þ B exp ð−CΔϕnÞÔi;n, where Oi;n are strings
of n spins and A;B; C ∼ 1. The decay of nonlocal terms
stems from the finite correlation length ξ ∼ 1=Δϕ in the
glass phase. Near the critical point these operators have low
density on the chain proportional to Δ2−ϕ. Spins on other
sites have a finite but exponentially suppressed overlap
with true conserved quantities.
At the critical point and in the paramagnetic state, Szi is

no longer a quasiconserved operator. However, there are
other local conserved quantities. For example, the products
Sz1S

z
2 of spins belonging to the same decimated cluster are

quasiconserved in the same sense as above. Therefore, the
entropy does not reach the maximal thermal value in either
phase. However, deep in the paramagnetic phase almost
all decimations are of a single spin, and there are essentially
no conserved quantities that contain Szi . Then, for initial
states with well-defined Sz on sites, the entropy is not
constrained.
Conclusions.—Using a real space RG method formu-

lated in real time, we developed a theory of a dynamical
quantum phase transition between distinct many-body
localized phases of a quantum spin chain. The two phases,
a simple paramagnet and a spin glass, are separated by an
infinite randomness fixed point. The spin glass is charac-
terized by long range temporal order in the spin; that is,
hSzi ðtÞSzi ð0Þi saturates to a finite value. The saturation value
onsets as Δ2−ϕ and serves as an order parameter of the
dynamical phase. We note that a paper, which was sub-
mitted in parallel to this one, explores a similar dynamical
transition from the complementary perspective of dynami-
cal response in a system prepared at equilibrium [22].
Unlike the spin correlations, the growth of entanglement

entropy following the quench is dramatically affected by
interactions. While without interactions the entropy satu-
rates in the two phases, the interactions lead to (delayed)
logarithmic growth of the entanglement entropy, which is
enhanced to ln2=ϕ t at criticality. In a finite system the
entropy grows to an extensive value but with smaller

PRL 112, 217204 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
30 MAY 2014

217204-4



entropy density than it would reach in thermal equilibrium.
An infinite set of emergent conserved quantities whose
value is constrained by the initial state prevents the system
from thermalizing.
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