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We study itinerant ferromagnetism in multiorbital Hubbard models in certain two-dimensional square
and three-dimensional cubic lattices. In the strong coupling limit where doubly occupied orbitals are not
allowed, we prove that the fully spin-polarized states are the unique ground states, apart from the trivial spin
degeneracies, for a large region of filling factors. Possible applications to p-orbital bands with ultracold
fermions in optical lattices, and electronic 3d-orbital bands in transition-metal oxides, are discussed.
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Itinerant ferromagnetism (FM) is one of the central topics
in condensedmatter physics [1–18]. Historically, it had been
thought that exchange energy, which is a perturbation-
theoretic idea, favors FM, but that is opposed by the kinetic
energy increase required by the Pauli exclusion principle to
polarize a fermionic system. Interactions need to be suffi-
ciently strong to drive FM transitions, and hence FM
is intrinsically a strong correlation problem. In fact, the
Lieb-Mattis theorem [1] for one-dimensional (1D) systems
shows that FM never occurs, regardless of how large
the exchange energy might be. Even with very strong
repulsion, electrons can remain unpolarized while their
wave functions are nevertheless significantly far from the
Slater-determinant type.
Strong correlations are necessary for itinerant FM, but the

precise mechanism is subtle. An early example is Nagaoka’s
theorem about the infinite U Hubbard model, fully filled
except for onemissing electron, called a hole. He showed [3],
andTasaki generalized the result [19], that the one hole causes
the system of itinerant electrons to be fully spin polarized—
i.e., saturated FM. However, Nagaoka’s theorem is not
relevant in 1D because no nontrivial loops are possible in
this case. For infinite U, ground states are degenerate,
regardless of spin configurations along the chain. As U
becomes finite, as shown in Ref. [20], the degeneracy is
lifted and the ground state is a spin singlet. Another set of
exact results is the flatband FM models on line graphs
[12–14,21,22]. On such graphs, there exist Wannier-like
localized single particle eigenstates, which eliminate the
kinetic energy cost of spin polarization. Later, interesting
metallic ferromagnetic models without flatband structures
were proposed by Tasaki [23], and then by Tanaka and Tasaki
[24]. FM in realistic flatband systemshas been proposed in the
p orbitals in honeycomb lattices with ultracold fermions [25].
In this Letter, we prove a theorem about FM in the two-

dimensional (2D) square and three-dimensional (3D) cubic
lattices with multiorbital structures. We can even do this in

1D, as shown in Corollary 2 in the Supplemental Material
[26], where we reproduce, by our method, Shen’s result
[27] that the multiorbital 1D system is FM. Our result
differs from that of Nagaoka in that it is valid for a large
region of filling factors in both 2D and 3D. It is also
different from flatband FM, in which fermion kinetic
energy differences are suppressed.
We emphasize that our result is robust in that the

translation invariance is not really required. The hopping
magnitudes can vary along chains and from chain to chain.
We confine our attention here to the translation invariant
Hamiltonian purely for simplicity of exposition.
Our band Hamiltonians behave like decoupled,

perpendicular 1D chains, which are coupled by the standard
on-site, multiorbital Hubbard interactions that are widely
used in the literature [4,5,28,29]. In the limit of infinite
intraorbital repulsion, we prove that the interorbital Hund’s
rule coupling at each site drives the ground states to fully
spin-polarized states. Furthermore, the ground states are
nondegenerate except for the obvious spin degeneracy, and
the wave functions are nodeless in a properly defined basis.
This theorem is generalized here to multicomponent
fermions with SUðNÞ symmetries. This itinerant FM
theorem is not just of academic interest because it may
be relevant to the p-orbital systems with ultracold atoms
[30] and to the LaAlO3=SrTiO3 interface of 3d-orbital
transition-metal oxides [31–33].
Let us first very briefly give a heuristic overview of our

model in 2D. Think of the square lattice Z2 as consisting of
horizontal lines and vertical lines, and imagine two kinds of
electrons, one of which can move with hard-core inter-
actions along the horizontal lines and the other of which
can move along the vertical lines. No transition between
any two lines is allowed. When two electrons of different
type meet at a vertex, Hund’s rule requires them to prefer to
be in a triplet state. Our theorem is that this interaction
forces the whole system to be uniquely FM. The two kinds
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of electrons in this picture are the px-orbital and py-orbital
electrons. The px orbitals overlap only in the x direction
and thus can allow motion only in that direction—and
similarly for py orbitals.
Now, let us describe multiorbital systems for spin-1=2

fermions on 2D square and 3D cubic lattices with quasi-1D
band structures. The p-orbital systems are used, but this is
only one possible example of atomic orbitals that could be
considered, another example being dxz and dyz orbitals.
Nearest-neighbor hoppings can be classified as either σ
bonding with hopping amplitude t∥ or π bonding with
hopping amplitude t⊥, which describe the hopping direc-
tions parallel or perpendicular to the orbital orientation,
respectively. Typically, t⊥ is much smaller than t∥ and thus
will be neglected here, leading to the following quasi-1D
band Hamiltonian (see Fig. 1):

H2Dð3DÞ
kin ¼

X

μ¼x;y;ðzÞ
H1D;μ

kin − μ0
X

r

nðrÞ;

H1D;μ
kin ¼ −t∥

X

r;σ¼↑;↓

p†
μ;σðrþ êμÞpμ;σðrÞ þ H:c: (1)

Here, pμ;σðrÞ is the annihilation operator in the pμ orbital
½μ ¼ x; y; ðzÞ� on site r with the spin eigenvalue σ; nðrÞ is
the total particle number on site r, and êμ is the unit vector
in the μ direction. Since the lattice is bipartite, the sign of t∥
can be flipped by a gauge transformation. Without loss of
generality, it is taken to be positive. The generic multi-
orbital on-site Hubbard interactions [34,35] are as follows:

Hint ¼ U
X

μ;r

nμ;↑ðrÞnμ;↓ðrÞ þ
V
2

X

μ≠ν;r
nμðrÞnνðrÞ

−
J
2

X

μ≠ν;r

�
~SμðrÞ · ~SνðrÞ −

1

4
nμðrÞnνðrÞ

�

þ Δ
X

μ≠ν;r
p†
μ↑ðrÞp†

μ↓ðrÞpν↓ðrÞpν↑ðrÞ; (2)

where nμ;σ ¼ p†
μ;σpμ;σ and~Sμ ¼ p†

μ;α~Sαβpμ;β represent the
spin operators in the pμ orbital. The U and V terms are
intra- and interorbital Hubbard interactions, respectively;
the J term represents the Hund’s rule coupling; the Δ term

describes the pair hopping process between different orbi-
tals. The expressions of U, V, J, and Δ in terms of integrals
of Wannier orbital wave functions and their physical mean-
ing are provided in Sec. I of the Supplemental Material [26].
We consider the limit U → þ∞ and start with the 2D

version of the Hamiltonian Hkin þHint. States with double
occupancy in a single orbital ð1= ffiffiffi

2
p Þfp†

x↑p
†
x↓�p†

y↑p
†
y↓gj0i

are projected out. The projected Fock space on a single
site is a tensor product of that on each orbital spanned by
three states as F r¼ ⊗

μ¼x;y
F μ

r with F μ
r ¼ fj0i; p†

μ;↑ðrÞj0i;
p†
μ;↓ðrÞj0ig. The projected Fock space F of the system is

a tensor product of F r on each site.
We state three lemmas before presenting the FM

Theorem 1. The proofs of Lemmas 2 and 3 are provided
in Sec. II of the Supplemental Material [26]. We shall
always assume henceforth the following two conditions,
which are essential for Lemmas 2 and 3, respectively.
(i) The boundary condition [36] on each row and column

is periodic (respectively, antiperiodic) when the particle
number in the row or column is odd (respectively, even).
The fact that the particle number in each row or column is
fixed is contained in Lemma 1 below.
(ii) There is at least one particle and one hole in each

chain. “Hole” means an empty orbital.
The following lemma is obvious.
Lemma 1. In the projected Fock space F for the

Hamiltonian H ¼ Hkin þHint [see Eqs. (1) and (2)], the
particle numbers of each row and each column are
separately conserved.
Based on Lemma 1, we can specify a partition of particle

numbers into rows X ¼ fri ¼ 1;…; Lyg and columns
Y ¼ fci ¼ 1;…; Lxg as

NX ¼ fNrig; NY ¼ fNcig; (3)

where Nri and Nci are the particle numbers conserved in
the rith row and the cith column, respectively. Altogether,PLy

ri¼1Nri þ
PLx

ci¼1Nci ¼ Ntot is the total particle number.
The physical Hilbert space HNX ;NY

is spanned by states in
F satisfying Eq. (3). A many-body basis inHNX ;NY

can be
defined using the following convention: we first order px-
orbital particles in each row by successively applying the
creation operators of px orbitals, starting with the leftmost
occupied site xr1 and continuing to the right until xrNr

in the
rth row. The operator creating the whole collection of Nr
px-orbital particles in the row r is denoted as

P†
x;r ¼

YNr

i¼1;ri∈row r

p†
x;αri

ðriÞ

¼ p†
x;αrNr

ðrNr
Þ � � �p†

x;αr
2
ðr2Þp†

x;αr
1
ðr1Þ: (4)

Here, i is the particle index in row r. ri ¼ ðxri ; rÞ and αri are,
respectively, the coordinate and sz eigenvalue for the ith

FIG. 1 (color online). The square lattice with the quasi-1D band
structure of the p-orbital bands. Particles in the px ðpyÞ orbital
can only move along the x ðyÞ direction, respectively. The sign of
t∥ can be changed by a gauge transformation on the square lattice.
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particle in the rth row; similarly, the creation operator
for the Nc py-orbital particles in the cth column can be
defined, following an order from top to bottom, as P†

y;c ¼Q
Nc

i¼1;ri∈columnc p
†
y;βci

ðriÞ ¼ p†
y;βcNc

ðrNc
Þ � � �p†

y;βc
2
ðr2Þp†

y;βc
1
ðr1Þ.

Here, similar definitions apply to ri ¼ ðc; yci Þ in column c
and βci . These coordinates for particles in each chain are
ordered as 1 ≤ xr1 < xr2 < � � � < xrNr

≤ Lx and 1 ≤ yc1 <
yc2 < � � � < ycNc

≤ Ly.
Based on the above ordering within each row and each

column, the many-body basis can be set up by further
ordering them by rows and columns and applying the
following creation operators to the vacuum j0i as

jR;SiNX ;NY
¼
YLx

j¼1

P†
y;cj

YLy

j¼1

P†
x;rj j0i

¼P†
y;cLx ���P†

y;c2P
†
y;c1P

†
x;rLy ���P†

x;r2P
†
x;r1 j0i: (5)

Here, j denotes the index of columns and rows. Given a
partition of the particle number NX , NY , the many-body
basis is specified by the coordinates of occupied sites
R ¼ frrji ; rcji g and the corresponding spin configuration
S ¼ fαrji ; βcji g for all i’s and j’s.
Lemma 2 (Nonpositivity). The off-diagonal matrix

elements of the Hamiltonian Hkin þHint with respect to
the bases defined in Eq. (5) are nonpositive.
Since the Hamiltonian is spin invariant, its eigenstates

can be labeled by the total spin S and its z component Sz.
The Hilbert space HNX ;NY

can be divided into subspaces

with different values of total Sz, denoted as HSz
NX ;NY

. The

many-body basis in this subspace is denoted as jR;SiSz .
The smallest non-negative value of Sz is denoted as Smin

z ,
which equals 0 (1

2
) for even (odd) values of Ntot. The

corresponding subspace is denoted asHmin
NX ;NY

. Every set of

eigenstates with total spin S has one representative in
Hmin

NX ;NY
, and thus the ground states in this subspace are

also the ground states in the entire Hilbert space.
Lemma 3 (Transitivity). Consider the Hamiltonian

matrix in the subspace HM
NX ;NY

with Sz ¼ M. Under

condition (ii), for any two basis vectors jui and ju0i, there
exits a series of basis vectors with nonzero matrix elements
ju1i; ju2i;…; juki connecting them, i.e.,

hujHju1ihu1jHju2i � � � hukjHju0i ≠ 0: (6)

Based on the above lemmas, we now establish the follow-
ing theorem about FM, which is the main result of this
Letter.
Theorem 1 (2D FM ground state). Consider the

Hamiltonian Hkin þHint with boundary condition (i) in
the limit U → þ∞. The physical Hilbert space is HNX ;NY

.
For any value of J > 0, the ground states include the fully

spin-polarized states. If condition (ii) is also satisfied, the
ground state is unique apart from the trivial spin degen-
eracy. The ground state jΨM

G i in HM
NX ;NY

for all values of

−Ntot=2 ≤ M ≤ Ntot=2 forms a set of spin multiplets with
S ¼ Ntot=2, which can be expressed as

jΨM
G i ¼

X

R;S

cR;SjR;SiM; (7)

with all the coefficients strictly positive.
Proof. Lemma 2 together with the Perron-Frobenius

theorem [37,38] (see Sec. III of the Supplemental Material
[26]) implies that there is a ground state jΨM

G i in HM
NX ;NY

that can be expanded as

jΨM
G i ¼

X

R;S

cR;SjR;SiM; (8)

with all coefficients non-negative, i.e., cR;S ≥ 0. Because
of the possible degeneracy, jΨM

G i may not be an eigen-
state of total spin. We define a reference state by summing
over all the bases in HM

NX ;NY
with equal weight as

jΨM
FMi ¼

P
R;SjR;SiM, which is symmetric under the

exchange of spin configurations of any two particles and
thus is one of the multiplet of the fully polarized states
S ¼ ðNtot=2Þ. Define a projection operator PS for the
subspace spanned by states with total spin S. Clearly,
hΨM

G jΨM
FMi ¼

P
R;ScR;S > 0 up to normalization factors;

thus, PNtot=2jΨM
G i ≠ 0. We have

HPNtot=2jΨM
G i ¼ PNtot=2HjΨM

G i ¼ EM
GPNtot=2jΨM

G i: (9)

For M ¼ Smin
z , PS¼Ntot=2jΨM

G i lies in Hmin
NX ;NY

and thus is a

ground state in the entire Hilbert space.
Further, if condition (ii) is satisfied, Lemma 3 of

transitivity is also valid. In that case, the Hamiltonian
matrix in the subspace HM

NX ;NY
is irreducible. According

to the Perron-Frobenius theorem, the ground state jΨM
G i in

this subspace is nondegenerate, and thus it must be an
eigenstate of total spin which should be S ¼ Ntot=2.
Otherwise, hΨM

G jΨM
FMi ¼ 0, which would contradict the

fact that hΨM
G jΨM

FMi > 0. Furthermore, the coefficients
in the expansion of Eq. (7) are strictly positive, i.e.,
cR;S > 0, as explained in Sec. III of the Supplemental
Material [26]. ▪
Remark. Theorem 1 does not require translation sym-

metry and thus remains true in the presence of on-site
disorders.
Theorem 1 is a joint effect of the 1D band structure and

the multiorbital Hund’s rule (i.e., J > 0). In the usual 1D
case, if U is infinite, fermions cannot pass each other. With
periodic boundary conditions, only order-preserving cyclic
permutations of spins can be realized through hopping
terms, and thus the Hamiltonianmatrix is not transitive. The
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ground states are degenerate. For Hkin þHint, particles in
orthogonal chains meet each other at the crossing sites, and
their spins are encouraged to align by the J term, which also
promotes the transitivity of the Hamiltonian matrix. This
removes the degeneracy and selects the fully polarized FM
state. If condition (ii) is notmet, Lemma3 of transitivitymay
not be valid, and thus the ground states could be degenerate.
On the other hand, condition (ii) is not necessary for
transitivity and can be relaxed to a weaker condition, as
described in Sec. III D of the Supplemental Material [26].
Unlike Nagaoka’s FM state, the particles in our FM

states still interact with each other through the V term even
though they are fully polarized. Conceivably, it could
further lead to Cooper pairing instability and other strong
correlation phases within the fully polarized states. Owing
to the nodeless structure of the ground state wave function
[Eq. (7)], these states can be simulated by quantum Monte
Carlo simulations free of any sign problem.
Theorem 1 can be further generalized from the SU(2)

systems to those with SUðNÞ symmetry. These high-spin
symmetries are not just of academic interest. It is proposed
to use ultracold alkali and alkaline-earth fermions to realize
SUðNÞ and SpðNÞ symmetric systems [39–42]. Recently,
the SU(6) symmetric 173Yb fermions have been loaded
into optical lattices to form a Mott-insulating state [43,44].
The SUðNÞ kinetic energy HSU

kin can be obtained by simply
increasing the number of fermion components in H1D;μ

kin
defined in Eq. (1), i.e., σ ¼ 1; 2;…; N. The SUðNÞ inter-
action term can be expressed as

HSU
int ¼

U
2

X

μ;σ≠σ0;r

nμ;σðrÞnμ;σ0 ðrÞ þ
V
2

X

μ≠ν;r
nμðrÞnνðrÞ

−
J
4

X

μ≠ν;r
fPμνðrÞ − nμðrÞnνðrÞg

þ Δ
2

X

μ≠ν;σ≠σ0;r

p†
μσðrÞp†

μσ0 ðrÞpνσ0 ðrÞpνσðrÞ; (10)

where nμðrÞ ¼
P

σnμ;σðrÞ; PμνðrÞ is the exchange operator
defined as PμνðrÞ ¼

P
σσ0p

†
μσðrÞp†

νσ0 ðrÞpμσ0 ðrÞpνσðrÞ.
For the SUðNÞ Hamiltonian HSU

kin þHSU
int , not only is the

particle number of each chain separately conserved, but
also the total particle number of each component σ is
separately conserved. We still use NX and NY to denote
particle number distribution in rows and columns, and
use N σ to represent the distribution of particle numbers
among different components. The corresponding subspace

is denoted as HN σ

NX ;NY
. By imitating the proof of Theorem

1, we arrive at the following theorem. The proof is shown in
Sec. IV of the Supplemental Material [26].
Theorem 2 [SUðNÞ ground state FM]. Consider the

SUðNÞ Hamiltonian HSU
kin þHSU

int in the limit U → ∞,
whose physical Hilbert space is HNX ;NY

. Under condition

(i), for any value of J > 0, the ground states include those
belonging to the fully symmetric rank-Ntot tensor repre-
sentation. If condition (ii) is further satisfied, the ground
states are unique apart from the trivial ðN þ Ntot − 1Þ!=
ðN − 1Þ!Ntot!-fold SUðNÞ spin degeneracy. In each sub-

space HN σ

NX ;NY
, jΨN σ

G i ¼ P
ucujui, with cu > 0 for all

basis vectors of jui in the subspace HN σ

NX ;NY
.

We turn now to the 3D and 1D cases. As proved in
Sec. V of the Supplemental Material [26], Lemmas 1, 2,
and 3 are still valid under conditions (i) and (ii). We then
arrive at the following corollary. (The 1D case is discussed
in Sec. VI of the Supplemental Material [26].)
Corollary 1 (3D FM ground state). The statements in

Theorems 1 and 2 of FM are also valid for the 3D version
of Hkin þHint defined in Eqs. (1) and (2) under the same
conditions.
So far, we have considered the case of J > 0. In certain

systems with strong electron-phonon coupling, such as
alkali-doped fullerenes, Hund’s rule may be replaced by an
anti-Hund’s rule, i.e., J < 0 [45]. In this case, we obtain the
following Theorem 3 in 2D.
Theorem 3. Consider the 2D Hamiltonian Hkin þHint

in the limit U → þ∞ with J < 0. If conditions (i) and (ii)
are satisfied, then the ground state in each subspace
HM

NX ;NY
, denoted as jΨM

G i, is nondegenerate and obeys

the following sign rule:

jΨM
G i ¼

X

R;S

ð−ÞΓcR;SjR;SiM; (11)

where all coefficients are strictly positive, i.e., cR;S > 0;
the sign ð−ÞΓ is defined by Γ ¼ P

1≤cj≤Lx;1≤i≤Ncj
ð1
2
− β

cj
i Þ.

The total spin of jΨM
G i is S ¼ jMj for jMj > 1

2
ΔN and S ¼

ΔN=2 for ΔN=2 ≤ M ≤ ΔN=2, respectively, where ΔN is
the difference between total particle numbers in the px and
py orbitals.
Theorem 3 can be proved following the proof of the

Lieb-Mattis theorem [20] and of Lieb’s theorem [46] for
antiferromagnetic Heisenberg models in bipartite lattices.
Here, px and py orbitals play the roles of two sublattices.
However, the system here is itinerant, not of local spin
moments. Because of the quasi-1D geometry, fermions do
not pass each other, and thus their magnetic properties
are not affected by the mobile fermions. The detailed
proof is presented in Sec. VII of the Supplemental
Material [26]. However, this theorem cannot be generalized
to the 3D case and the SUðNÞ case, even in 2D, because in
both cases, the antiferromagnetic coupling J < 0 leads to
intrinsic frustrations.
The search for FM states has become a research focus in

cold atoms [25,47–53]. Both the 2D and 3D Hamiltonians
Hkin þHint can be realized in the p-orbital band in
optical lattices. With a moderate optical potential depth
V0=ER ¼ 15, where ER is the recoil energy, it was
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calculated that t⊥=t∥ ≈ 5% [54], and thus the neglect of t∥ in
Eq. (1) is justified. A Gutzwiller variational approach has
been applied to the 2D Hamiltonian of Hkin þHint [30].
Furthermore, many transition-metal oxides possess t2g-
orbital bands with quasi-2D layered structures, such as
the (001) interface of 3d-orbital transition-metal oxides
[31–33]. Its 3dxz and 3dyz bands are quasi-1D, as described
by Eq. (1), with pxðyÞ there corresponding to dxðyÞz. Also,
strongly correlated 3d electrons possess the largeU physics.
Further discussion on the physics of finite U and V is given
in Sec. VIII of the Supplemental Material [26].
Summary.—We have shown—contrary to the normal

situation in 1D without orbital degrees of freedom—that
fully saturated ferromagnetism is possible in certain tight-
binding lattice models with several orbitals at each site.
This holds for 2D and 3D models and for SUðNÞmodels as
well as SU(2) models. Hard-core interactions in 1D chains,
together with the Hund’s rule coupling, stabilize the effect
and result in unique ground states with saturated ferro-
magnetism. The result also holds for a large region of
electron densities in both 2D and 3D, or in 1D with two or
three p orbitals at each site. Our theorems might provide a
reference point for the study of itinerant FM in exper-
imental orbitally active systems with ultracold optical
lattices and transition-metal oxides.
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