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We investigate the energy transfer between counterpropagating quantum Hall edge channels (ECs) in a
two-dimensional electron system at a filling factor of ν ¼ 1. The ECs are separated by a thin impenetrable
potential barrier and Coulomb coupled, thereby constituting a quasi-one-dimensional analogue of a
spinless Luttinger liquid (LL). We drive one, say hot, EC far from thermal equilibrium and measure the
energy transfer rate P into the second, cold, EC using a quantum point contact as a bolometer. The
dependence of P on the drive bias indicates a breakdown of the momentum conservation, whereas P is
almost independent of the length of the region where the ECs interact. Interpreting our results in terms of
plasmons (collective density excitations), we find that the energy transfer between the ECs occurs via
plasmon backscattering at the boundaries of the LL. The backscattering probability is determined by the LL
interaction parameter and can be tuned by changing the width of the electrostatic potential barrier between
the ECs.
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One-dimensional electronic systems (1DESs) are col-
lective in nature. As first shown by Tomonaga [1], an
interacting 1DES near its ground state can be modeled with
the help of a bosonization technique. Later on, Luttinger [2]
introduced an exactly soluble [3] model for two species of
fermions (left and right movers) with an infinite linear
dispersion, referred to as a Luttinger liquid (LL). The
excitations of a spinless LL can be described as non-
interacting plasmons, bosonic collective fluctuations of the
electron density [4]. The plasmon’s lack of interaction gives
rise to the counterintuitive prediction that an excited ideal
LL should never thermalize.
The strength of the LL model fully manifests itself out of

equilibrium, where it still offers a single-particle descrip-
tion of the kinetics of a strongly correlated 1DES. In the
presence of disorder, energy relaxation is then described as
elastic plasmon scattering off inhomogeneities [5,6]. This
has not yet been confirmed experimentally. Instead, for two
tunnel-coupled quantum wires far from equilibrium devia-
tions from the LL model were observed [7]. The main
problem seems to be disorder, which gives rise to thermal-
ization on the length scale of the mean free path [6].
Signatures of disordered LLs, such as a power law
dependence of the conductance on temperature or bias,
have been observed in various 1DESs [8–10]. However, the
design of experiments far from equilibrium remains com-
plicated because of small mean free paths of no more than a
few micrometers in such devices [11].

Here we apply a strong magnetic field perpendicular to
the two-dimensional electronic system (2DES) of a GaAs/
AlGaAs heterostructure and realize a tunable LL based on
edge channels (ECs) at an integer filling factor of ν ¼ 1.
Related to their chiral nature, ECs offer the fundamental
advantage of suppressed backscattering of electrons [12].
Yet, contrary to the chiral LLs in the fractional quantum
Hall regime [13], a single EC at ν ¼ 1 behaves as a perfect
one-dimensional Fermi liquid [14,15]. To still create a
spinless LL we bring two counterpropagating ECs into
interaction, providing left and right movers according to the
original proposal by Luttinger. Here we follow Ref. [16],
where a direct analogy between such a system and the LL
model has been demonstrated. Unlike in experiments on
tunneling in cleaved edge overgrown [17] and corner-
overgrown [18] structures, we block the charge current
between the ECs and study the energy transfer between the
left and right movers in this handmade LL. Besides much
weaker disorder, this system has a second important
advantage, namely, the possibility of individual control
over left versus right movers.
Our counterpropagating ECs are separated by a barrier

impenetrable for electrons, marked by C in Fig. 1(a). It is
created electrostatically by applying a negative voltage VC
to the metallic center gate [C in Fig. 1(b)]. Varying VC
allows us to tune the width of the barrier and the strength of
the Coulomb coupling between the ECs. Other gates [1
through 8 in Fig. 1(b)] have two purposes: first, they can be

PRL 112, 216402 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
30 MAY 2014

0031-9007=14=112(21)=216402(5) 216402-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.216402
http://dx.doi.org/10.1103/PhysRevLett.112.216402
http://dx.doi.org/10.1103/PhysRevLett.112.216402
http://dx.doi.org/10.1103/PhysRevLett.112.216402


used to control the length of the interaction region (L) by
guiding the ECs away from the center barrier. Their second
purpose is to define quantum point contacts (QPCs). We
create a nonequilibrium electronic distribution in one, say
hot, EC by partitioning the electrons at a drive QPC [19,20]
[DRIVE circuit in Fig. 1(a)]. Based on this technique,
energy relaxation between copropagating ECs was already
investigated at ν ¼ 2 with a quantum dot as the detector
[20,21] and in the fractional quantum Hall regime by
observation of complex edge reconstruction effects [22].
We use a second QPC, defined in the counterpropagating
EC [DETECTOR circuit in Fig. 1(a)], to detect the excess
energy transferred from the hot EC. This setup allows us to
create a perfect LL model system out of equilibrium and to
study the energy flux between the left and right movers (red
winding arrows in Fig. 1(a).
Our samples are based on a 200 nm deep 2DES of a

GaAs/AlGaAs heterostructure with electron density 9.3 ×
1010 cm−2 and mobility 4 × 106 cm2=Vs. The metallic
gates are obtained by thermal evaporation of 3 nm Ti
and 30 nm Au. The experiments are performed in a
3He=4He dilution refrigerator in a magnetic field of
3.8 T at 60 and 90 mK. Current measurements are
performed using homemade I–V converters with an input
offset voltage ≤ 10 μV. In bolometric experiments, the
detector QPC conductance is measured with a 5 μV rms ac
modulation (11—33 Hz). For thermoelectric measurements

we use a fixed ac modulation (11—33 Hz) and measure the
derivative dIDET=dVDRIVE as a function of the dc bias
VDRIVE, which is numerically integrated to give IDET. The
modulation is 5 μV rms at jVDRIVEj ≤ 300 μV, and 30 μV
rms otherwise. Throughout the Letter the drive QPCs
conductance is ≈0.3e2=h, corresponding to a perfectly
linear I–V. Hence, the excitation is the same for both
polarities of VDRIVE, explaining an almost perfect sym-
metry of the data in Figs. 2 and 3 below.
The linear response conductance of a QPC,

G ¼ Tr × e2=h, is proportional to its transparency Tr,
the probability for an electron to be transmitted through
the QPC. The energy dependence of Tr can be used to
convert a thermal gradient into an electric current
[24,26,27]. Here we demonstrate a simpler and quantitative
approach and use a QPC as a bolometer. In leading order
δGDET is proportional to the excess energy fluxes δFL and
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FIG. 1 (color online). Experimental layout. (a) Gated areas of
the 2DES are shown in gray and the ECs are shown by solid lines
with arrows. In the drive circuit we create a nonequilibrium
particle distribution in a hot EC by using a partially transparent
drive QPC biased with a voltage VDRIVE. The hot EC propagates
along the central barrier (C), reaches the interaction region of
length L and heats a counterpropagating cold EC in the detector
circuit (winding arrows). The nonequilibrium distribution in the
cold EC is characterized with the help of the detector QPC.
(b) Electron micrograph of the sample identical to the one used in
the experiment. The central gate (C) and a number of side gates
used to define constrictions have a gray color. The EC chirality is
the same as in (a), see the white arrow.

FIG. 2 (color online). QPC as a bolometer. (a) Bolometric
response δGDET versus VDRIVE (dots). The detector QPC is
defined by gate 2 and the drive QPC with gate 5,
L ¼ 5.2 μm. The energy transfer rate P is shown on right axis
scale. The vertical scale bar corresponds to δTeff ¼ 10 mK. The
dashed line is a fit to the model of boundary plasmon scattering
with parameters ϵ0 ¼ 80 μeV, K ≈ 1.12. The data were taken at
VC ¼ −0.6 V and T ¼ 60 mK. (b) P (left axis) and δTeff (right
axis) as a function of VDRIVE for various values of L (see legend).
The detector QPC is defined with gate 2 (closed symbols) or gate
3 (open symbols). The drive QPC is placed about 40 μm
upstream of the interaction region [not shown in Fig. 1(b)].
For this data, the electrostatic contribution was subtracted [23].
δGDET and P are considerably smaller than in Fig. 2(a), because
of the hot EC cooling down on the way to the interaction region
[24]. The data were taken at VC ¼ −0.385 V and T ¼ 90 mK.
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δFR impinging on it, respectively, from the left and right,
and the second energy derivative of Tr:

δGDET ¼ e2
∂2TrDET
∂E2

δFR þ δFL

2
: (1)

In the measurements discussed below, we use either
gate 2 or gate 3 [Fig. 1(b)] to define our detector QPC
at TrDET ≃ 0.1.
In Fig. 2(a) we present a typical bolometer measurement

of δGDET versus VDRIVE. δGDET is parabolic at small
jVDRIVEj and close to linear for jVDRIVEj≳ 100 μV.
δGDETðVDRIVEÞ is nearly symmetric with respect to the
origin, indicating that the excess energy in the hot EC is
independent of the sign of VDRIVE. Similar results are
obtained when the drive QPC is placed 40 μm upstream of
the interaction region; see Fig. 2(b). We verified that our
bolometer indeed probes the energy transfer rate (P)
between the ECs within the interaction region.
Corresponding experiments and the derivation of formula
(1) are presented in the Supplemental Material [28].
We calibrate the bolometer by measuring the temperature

T dependence ∂GDET=∂T in equilibrium and extracting
∂2TrDET=∂E2. These two quantities are related via Eq. (1)
and a standard expression for the energy flux in equilib-
rium, FR ¼ FL ¼ π2ðkBTÞ2=6h [21]. So obtained P is
given on the right and left axes in Figs. 2(a) and 2(b),
respectively. P is in the fW range, meaning that just a tiny
fraction (∼10−4) of the excess energy of the hot EC is
absorbed in the cold EC. It is tempting to determine an
effective excess temperature δTeff in the cold EC. For small
changes one finds δTeff ¼ 2δGDET=ð∂GDET=∂TÞ ≪ T.

Here the factor of 2 accounts for the fact that in our
experiment δFL ¼ P and δFR ¼ 0. δTeff is quantified in
Figs. 2(a) (bar) and 2(b) (right axis).
Nonzero δTeff in the cold EC generates a thermoelectric

current (IDET) across the detector QPC. In Fig. 3, IDET is
plotted against VDRIVE for two choices of L. These data
closely resemble the bolometric response shown in Fig. 2,
which is a general feature of our measurements. The
connection between the two experiments becomes evident
in the inset of Fig. 3. The thermoelectric voltage, defined as
VDET ≡ IDET=GDET, is proportional to δTeff measured
using the bolometer. The Seebeck coefficient of the
detector QPC S ¼ δVDET=δTeff ≈ 13 μV=K is comparable
to previous measurements [26,27]. It is independent of the
sign of VDRIVE and the choice of the drive QPC, as
expected. The meaningful value of S indicates that the
cold EC is close to local thermal equilibrium and justifies
our bolometric approach.
An observation of P ∝ VDRIVE points at a breakdown of

the momentum conservation for the energy exchange
between counterpropagating ECs [29]. For a deeper analy-
sis we use the kinetic equation approach [5] and express P
in an inhomogeneous LL as

P ¼ 1

h

Z
εfHOTðεÞRεdε; (2)

where Rε is the energy dependent backscattering proba-
bility of plasmons and fHOTðεÞ is their occupation number
in the hot EC. In the limit of jeVDRIVEj ≫ kBT, ε we can
assume fHOTðεÞ ∝ jeVDRIVEj=ε. Hence P ∝ jVDRIVEj indi-
cates that backscattering is suppressed at high ε. Such a
behavior is expected in a random disorder model with a
finite correlation length lcorr [30]. The disorder potential
absorbs momenta up to ℏl−1corr and enables transfer of energy
quanta up to ε0 ∼ ℏul−1corr, where u is the plasmon velocity
[31]. With the magnetoplasmon velocity at ν ¼ 1 estimated
to be u ∼ 107 cm=s [32] and with ε0 ∼ 80 μeV determined
from the onset of the linear slope of PðVDRIVEÞ in Fig. 2(a),
we find lcorr ∼ 1 μm for our device.
We gain more insights about plasmon scattering by

studying P in dependence on the ECs interaction length
L. Using a fixed drive QPC (40 μm upstream of the
interaction region) we vary L in the range 0–6.3 μm by
bending the hot EC with gates 6, 7, or 8 [see Fig. 1(b)]. As
shown in Fig. 2(b), P stays constant as L is increased
between 2.2 and 6.3 μm. Obviously, this is inconsistent
with random disorder scattering, for which Rε ∝ L [30].
Moreover, the heretical conclusion that part of the inter-
action region might be broken and would therefore not
contribute to scattering is disproved in Fig. 3. Instead, the
independence of P on L indicates boundary scattering of
plasmons at the entrance and exit of the interaction region
as a dominant energy transfer mechanism. As seen from
Fig. 2(b), P depends on L only for small L≲ lcorr, which

FIG. 3 (color online). Thermoelectric measurements. IDET
across the detector QPC 2 excited with the help of the drive
QPC 8, L ¼ 3 μm. The sign of IDET corresponds to the injection
of nonequilibrium electrons across the detector QPC, similar
to the case of small magnetic fields [25]. The effect is
reduced when gate 1 is closed and the interaction region is
isolated from the detector QPC, L ¼ 0 [Fig. 1(b)]. Inset:
Proportionality of VDET and δTeff in the detector EC measured
with the drive QPCs 5 (closed dots) and 6 (open squares)
and detector QPC 2, L ¼ 5.2 μm. All the data corresponds
to VC ¼ −0.6 V and T ¼ 60 mK.
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can be qualitatively explained by an overlap of the two
boundaries and a sufficiently long-ranged interaction
between the ECs (finite signal at L ¼ 0, see also Fig. 3).
The boundary scattering is related to the change of the

plasmon velocity in the interaction region, where it is
renormalized as u ¼ vF=K. Here vF is the Fermi velocity in
the isolated EC and K ≥ 1 is a dimensionless LL inter-
action constant [5]. Note that this process is a plasmon
counterpart of a charge fractionalization at the LL boundary
[33]. At small energies the scattering obeys the Fresnel law
Rε ¼ ½ð1 − KÞ=ð1þ KÞ�2. If K varies smoothly across the
length scale lbound, the reflection is suppressed for
ε≳ ε0 ¼ ℏul−1bound, where lbound ∼ 1 μm replaces lcorr con-
sidered above.
An independent indication for boundary scattering is the

observed P ∝ V2
DRIVE at weak driving jeVDRIVEj≲ ε0; see

Fig. 2. This is expected for boundary scattering at ε < ε0, as
Rε is constant in this case. In contrast, for disorder
scattering [30] Rε ∝ ε2 for ε < ε0, which would result in
P ∝ V4

DRIVE, similar to a perturbative calculation [29].
The dashed line in Fig. 2(a) is a model curve based on

Eq. (2) assuming boundary scattering of plasmons. The
only fit parameters are ε0 ¼ 80 μeV, which sets the cross-
over from parabolic to linear PðVDRIVEÞ andK ¼ 1.12. The
interaction strength j1 − Kj can be directly tuned by VC. As
shown in Fig. 4 for the case of jeVDRIVEj ≫ ε0, P sharply
increases in the range −0.8 V < VC < −0.37 V, corre-
sponding to 0.1 < j1 − Kj≲ 0.25.
At our largest interaction u ≈ 0.75vF, which corresponds

to a dimensionless LL conductance of g ≈ 0.5. This is close
to values reported in genuine 1DESs [7–9]. We finally note
that the electrostatic width of the central barrier is d≃
300 nm (see the upper axis of Fig. 4), comparable to the

depth of the 2DES and the width of gate C. Our experi-
ments are in the regime d < lbound, for which the inter-
action is dominated by Coulomb coupling [29]. We obtain
a reasonable agreement (dashed line in Fig. 4) evaluating
the interaction as [4] K ¼ ½1 − ðg2=2πℏvFÞ2�−1=2, where
g2 ¼ 2e2K0ðqdÞ=k is a matrix element of the Coulomb
interaction at a wave vector q ¼ l−1bound, K0 is the Bessel
function and k ≈ 12.5 is the dielectric constant [34].
In summary, we studied the LL model out of thermal

equilibrium based on counterpropagating quantum
Hall ECs. The energy transfer between the ECs is con-
sistent with elastic backscattering of collective density
excitations at the boundaries of this handmade LL.
Counterpropagating quantum Hall ECs are a perfect
candidate for refined tests of the LL theory, a first example
being presented here.
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Note added in Proof.—After submission of this Letter an
experiment studying charge fractionalization in a similar
handmade LL system was published by Kamata et al.
in [35].
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