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We consider two mean-field models of structural glasses, the random energy model and the p-spin
model (PSM), and we show that the finite-size fluctuations of the freezing temperature are described by
extreme-value statistics (EVS) distributions, establishing an unprecedented connection between EVS and
the freezing transition of structural glasses. For the random energy model, the freezing-temperature
fluctuations are described by the Gumbel EVS distribution, while for the PSM the freezing temperature
fluctuates according to the Tracy-Widom EVS distribution, which has been recently discovered within the
theory of random matrices. For the PSM, we provide an analytical argument showing that the emergence of
the Tracy-Widom distribution can be understood in terms of the statistics of glassy metastable states.
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The problem of characterizing the maximum of a set of
random variables, also known as extreme-value statistics
(EVS), has attracted considerable interest for several
decades now. EVS has found a remarkable number of
applications in several scientific fields, including engineer-
ing [1], finance [2], and biology [3]. Moreover, EVS has
raised particular interest in physics [4], describing the
phenomenology of several systems of general interest such
as dynamical [5] and disordered [6] systems. In particular,
EVS has recently been shown to play a role in the critical
regime of spin glasses, i.e., disordered uniaxial magnetic
materials like Fe0.5Mn0.5TiO3 and Eu0.5Ba0.5MnO3 [7,8]:
In this Letter, we establish a novel connection between
EVS and a completely different class of solid materials.
These systems, known as structural glasses, are liquids—
like o-terphenyl and glycerol—that have been cooled fast
enough to avoid crystallization [9].
Since its very first development, the theory of structural

glasses has continuously drawn the attention of the scientific
community: Understanding the low-temperature behavior
of these systems and the nature of their glassy phase is
still one of the deepest unsolved questions in condensed-
matter theory [10]. In particular, the existence of a freezing
transition in structural glasses has been the subject of an
ongoing debate for the last few decades [11]. The develop-
ment of exactly solvable models [12,13] mimicking the
phenomenology of structural glasses showed that such a
transition does exist on a mean-field level and, later on,
further studies suggested [11,14] that a freezing transition
might also occur for realistic, non-mean-field [15] systems.
We consider two well-established [11,16] mean-field

models of the freezing transition of structural glasses, the
random energy model (REM) [12] and the p-spin model
(PSM) [13], and we study the disorder-induced fluctuations
of the critical temperature arising when the system size is
large but finite. We show that for the REM the fluctuations

of the critical temperature are described by an EVS
distribution of independent variables: The Gumbel distri-
bution [1]. For the PSM, the finite-size fluctuations of the
critical point are described by an EVS distribution of
correlated variables, the Tracy-Widom (TW) distribution
[17]. The TW distribution has recently been discovered in
the theory of random matrices, and it describes random
fluctuations in a variety of physical systems [18,19].
Random energy model.—Let us start by considering the

simplest model of a structural glass exhibiting a freezing
transition: The REM [12]. Here, the REM will serve as an
illustrative model to show the role played by EVS in the
structural-glass freezing transition. The REM is defined
as a system of N Ising spins Si ¼ �1: An energy E½~S� is
assigned to every spin configuration ~S, and the energies
E ≡ fE½~S�g are independent and identically distributed
(IID) Gaussian random variables with zero mean and
variance N=2. In the thermodynamic limit, the REM has
a freezing phase transition: There is a critical value of the
energy ec, which is the lowest value of e such that the
number of states ~S with energy E½~S� ¼ Ne is exponentially
large in the system size. The inverse critical temperature βc
is determined from the threshold energy ec by the temper-
ature-energy relation βc ¼ −2ec, which can be obtained by
computing the Legendre transform of the partition function
[12]. Now, let us introduce a critical temperature for a REM
with a finite number of spins and let us study its sample-to-
sample fluctuations. If the system size N is sufficiently
large, the threshold energy ec E of an energy sample E
coincides with the lowest energy value, i.e.
Nec E ¼ min~SE½~S�. It follows [20] that, for large N, the
threshold energy is ec E ¼ ec − χ=ð2N ffiffiffiffiffiffiffiffiffiffi

log 2
p Þ, where χ

is a random variable distributed according to the Gumbel
distribution: Pðχ ≤ xÞ ¼ exp½− expð−xÞ�. It is easy to show
that the Gumbel distribution describes not only the statistics
of the ground state [20], but also the fluctuations of the
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critical temperature. A natural way to introduce a finite-size
critical temperature is to extend the temperature-energy
relation βc ¼ −2ec to systems with finite sizes [7,8,21]: We
set βc E ¼ −2ec E , where βc E is the finite-size critical
temperature of sample E. Putting this definition together
with the above expression for ec E, we obtain the expression
for the finite-size critical temperature βc E ¼ βcþ
χ=ðN ffiffiffiffiffiffiffiffiffiffi

log 2
p Þ. This shows that the finite-size fluctuations

of the critical temperature of the REM are described by an
EVS distribution, the Gumbel distribution, and that the
width of the critical region βc E − βc scales with the system
size as 1=N. Given that the REM is a highly simplified
model for a structural glass [11,15], a natural question to
ask is whether EVS could play a role in other structural-
glass models more realistic than the REM. We will address
this question in the following section.
p-spin model.—In this section, we will consider the

mean-field PSM [12,13]. The PSM captures some funda-
mental physical features of structural glasses that are absent
in the REM [11]: For example, in the PSM energy minima
are no longer single configurations ~S like in the REM, but
they also allow for small vibrations around the minimum
[11]. Moreover, the PSM reproduces the onset of a dynami-
cal slowing down at low temperatures typical of structural
glasses [16]. In what follows, we will focus on the PSM
with p ¼ 3 [22], which is given by N Ising spins Si ¼ �1
with Hamiltonian

H½~S� ¼ −
ffiffiffi
3

p

N

X

i<j<k

JijkSiSjSk;

where Jijk are IID random variables equal to �1 with
equal probability. Unlike the REM, the problem of studying
sample-to-sample fluctuations of the critical temperature of
the PSM cannot be addressed analytically. Hence, we have
studied the PSM numerically by means of Monte Carlo
simulations combined with the parallel-tempering
algorithm [23]. Even though the CPU time for the PSM
increases with the system size as N3 [22], we exploited the
binary form of the couplings to use an efficient asynchro-
nous multispin coding method [24], allowing us
to study extensive system sizes and numbers of disorder
samples. Specifically, we studied systems with N ¼ 16,
32, 64, 128, 256 spins and a number of disorder samples
2.6 × 102 ≤ S ≤ 1.3 × 105.
In the thermodynamic limit, the PSM is known [11] to

have a mixed first-order–second-order phase transition:

Given two independent replicas ~S1, ~S2, this phase transition
can be described in terms of their mutual overlap
Q≡ ð1=NÞPN

i¼1 S
1
i S

2
i . In the high-temperature phase

β < βc ¼ 1.535 [22], the two replicas explore exponen-
tially many energy minima. Since these minima are random
states not related by any symmetry, different minima have
zero mutual overlap [11,16], and one has hQ2i ¼ hQi ¼ 0,

where hi is the Boltzmann average, and ¯ denotes the
average over disorder samples fJijkg≡ J . In the low-
temperature phase β > βc, the two replicas are both trapped
in a few low-lying energy minima and thus they develop

a nonzero mutual overlap: hQi > 0, hQ2i − hQi2 > 0. Let
us now introduce a finite-size critical temperature for the
PSM. In the first place, the above discussion of the phase
transition of the PSM shows that the infinite-volume critical
point βc is the value of the temperature at which the

order-parameter fluctuations (OPF) arise: hQ2i − hQi2 ¼ 0

if β ≲ βc, hQ2i − hQi2 > 0 if β ≳ βc. To introduce a critical
temperature βcJ of a finite-size PSM with couplings J , we

recall that the Binder cumulant B≡ 1
2
ð3 − hQ4i=hQ2i2Þ of

a finite-size PSM has a minimum at a given temperature:
This temperature, which we will denote by βcN, is the
temperature at which critical OPF arise [22], and it is

shown in Fig. 1. It follows that the quantity hQ2iðβcNÞ −
hQiðβcNÞ2 represents the average OPF at the critical point.
Given these average critical OPF, it is natural to identify
the finite-size critical temperature βcJ of sample J as the
value of β for which the OPF of the sample hQ2iJ ðβÞ −
hQiJ ðβÞ2 are equal to the above average critical value

hQ2iJ ðβcJ Þ − hQiJ ðβcJ Þ2 ¼ hQ2iðβcNÞ − hQiðβcNÞ2:
(1)

The definition (1) of finite-size critical temperature is
depicted in Fig. 2. As shown in the top inset of Fig. 3, the

variance σ2βN ≡ β2cJ − βcJ
2 of the critical-temperature

distribution is a decreasing function of the system size
N, in particular σβN ∼ N−ϕ, with ϕ ¼ 0.45� 0.04. Indeed,
σβN represents the width of the critical region of a system

FIG. 1 (color online). Binder cumulant B of the p-spin model
with p ¼ 3 as a function of the inverse temperature β for system
sizes N ¼ 16, 32, 64, 128, 256 (in red, blue, brown, black, green,
respectively), critical temperature βcN for N ¼ 128, and infinite-
size critical temperature βc.
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with size N: As the system size gets larger and larger, the
width σβN shrinks, and the finite-size critical temperature
converges to the infinite-size value βc (see Supplemental
Material [25]) [7,8,21,26]. Given that the distribution of
βcJ obeys the above scaling with the system size N, one
can expect [8,21] that the distribution of the normalized
critical temperature xJ ≡ ðβcJ − βcJ Þ=σβN , converges to a
finite limiting shape as the system size goes to infinity. This

claim is supported by the numerical data shown in the main
panel and bottom inset of Fig. 3, showing that the distri-
bution of xJ appears to converge to a limiting distribution
for largeN. In contrast to the REM, the shape of this limiting
distribution does not seem to be the Gumbel distribution,
but another EVS distribution recently discovered in the
theory of random matrices, the TW distribution [17], as
shown in the main panel and bottom inset of Fig. 3 and as
suggested by statistical-hypothesis tests (see Supplemental
Material [25]). Interestingly, the TW distribution has
recently been shown to play a role in describing the critical
behavior of disordered systems: For example, the TW
distribution characterizes the average number of minima
in a simple model of a random-energy landscape close to its
freezing transition [26], and the finite-size fluctuations of
the critical temperature in mean-field spin glasses [7,8].
Now, we will provide an analytical argument to give

insight into the above finding that the finite-size critical
temperature fluctuates according to the TW distribution.
Let us consider a version of the PSM where spins Si are not
binary, but continuous variables satisfying the spherical
constraint

P
N
i¼1 S

2
i ¼ N [27]. This model is known as the

spherical PSM, and it has exactly the same behavior as the
PSM with Ising spins above [22], but it is more suitable for
analytical studies [16]. Let us now consider this PSM for
any finite p > 2 close to the transition point: The system is
in the high (low) temperature phase if the average internal
energy E is higher (lower) than the average energy Ec of
the local energy minima [16]. Now, consider a finite-size
sample J of the PSM. If the system’s internal energy E is
larger than the energy of the lowest local minimum, the
system is in the high-temperature phase where it explores
exponentially many local minima. Otherwise, the system
is in the low-temperature phase where it explores the

FIG. 2 (color online). Average order-parameter fluctuations

hQ2iJ − hQiJ 2 (in red), and single-sample order-parameter
fluctuations hQ2iJ − hQi2J (in blue) as functions of the inverse
temperature β for the p-spin model with p ¼ 3 andN ¼ 128. The
value of βc128 is taken from Fig. 1, and the inverse critical
temperature βcJ is determined by Eq. (1) (in brown).

FIG. 3 (color online). Distribution pðxJ Þ of the normalized
critical temperature xJ for the p-spin model with p ¼ 3 and
system sizes N ¼ 16, 32, 64, 128 (in red, blue, brown, black,
respectively), and Tracy-Widom, Gumbel, and Gaussian distri-
butions, all with zero mean and unit variance (in black). The
plot has no adjustable parameters, and it is in logarithmic scale
to emphasize the shape of the distributions on the tails. Top
inset: Width σβN of the distribution of the finite-size critical
temperature as a function of the system size N (in red), and fitting
function fðNÞ ¼ aN−ϕ (in black), with fitting exponent
ϕ ¼ 0.45� 0.04. Bottom inset: Same plot as in the main panel
in linear scale.

FIG. 4. Schematic energy landscape of the spherical p-spin
model: EnergyH½~S� of a given sample J as a function of the spin
configuration ~S. Three local energy minima labeled as I, II, III
(left), and one low-lying minimum (right) are depicted. The
energy of minimum II coincides with the critical energy EcJ of
the sample. The smallest eigenvalues of the Hessian matrix
∂2H=ð∂Si∂SjÞ computed in each local minimum are λImin, λ

II
min,

λIIImin. The geometry of the minima sets the energy threshold: Since
here λImin < λIIImin < λIImin, minimum II has the largest curvature,
thus the lowest energy amongst the three local energy minima.
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low-lying minima [16]. Hence, the critical energy EcJ of
this sample is given by the energy of the lowest local
minimum, as illustrated in Fig. 4. Since the spin variables
are continuous, we can introduce the Hessian matrix of the
Hamiltonian ∂2H=ð∂Si∂SjÞ evaluated in a local minimum,
and its smallest eigenvalue λmin. The fluctuations of EcJ
can be understood by considering the geometry of the local
energy minima. Indeed, following [11] the deeper the

minimum, the larger the curvature of H½~S� vs ~S at the
minimum, and so the larger λmin, as illustrated in Fig. 4: Let
us, then, assume [11] that the energy EcJ of the lowest-
lying minimum is set by the smallest eigenvalue λmin of
the Hessian in such a minimum. Since for any p > 2 the
Hessian is a random matrix belonging to the Gaussian
orthogonal ensemble [27,28], its smallest eigenvalue λmin is
distributed according to the TW distribution [17]. Given
that λmin is TW distributed, the above geometrical argument
shows that the fluctuations of the critical energy EcJ , and
consequently the fluctuations of the critical temperature
βcJ , are described by the TW distribution. Importantly, this
argument shows that the emergence of the TW distribution
shown in the numerical simulations for p ¼ 3 holds for
any finite p > 2. Finally, let us discuss the large-p limit: In
this limit, the PSM is equivalent to the REM [12], and
the distribution of the finite-size critical temperature con-
verges to the Gumbel distribution. Indeed, for large p, the
above local geometrical structure of the energy landscape
(see Fig. 4) disappears, and the local minima become
simply a set of IID Gaussian random variables. Given that
the energy threshold EcJ is the minimum of these IID
Gaussian random variables, EcJ is distributed according to
the Gumbel distribution [29], and so is the critical
temperature.
Conclusions.—In this Letter, we have studied the finite-

size fluctuations of the freezing-transition temperature of
two mean-field models of structural glasses: The random
energy model (REM) [12] and the p-spin model (PSM)
[13] with p ¼ 3. We find that for both the
REM and the PSM, the finite-size fluctuations of
the critical temperature are described by extreme-value-
statistics (EVS) probability distributions. For the REM, the
critical-temperature fluctuations are described by the
Gumbel distribution [29], while for the PSM the critical
temperature is distributed according to the Tracy-Widom
(TW) distribution, which has recently been discovered in
the theory of random matrices [17]. For the PSM, we have
provided an analytical argument to understand the emer-
gence of the TW distribution. Recent studies [7,8] have
shown that the TW distribution also emerges in spin
glasses: The above analytical argument shows that the
physics underlying the emergence of the TW distribution in
structural glasses is completely different from spin glasses,
because it involves a different mechanism related to the
statistics of glassy metastable states. Taken together, the
results provided in this Letter establish an unprecedented

connection between the theory of extreme values and the
freezing transition of structural glasses.
As a topic of future studies, it would be interesting to study

the fluctuations of the critical temperature in structural-glass
models with short-range interactions, such as the Edwards-
Anderson (EA) model in an external magnetic field [30]. In
this regard, previous studies have shown that EVS distribu-
tions play a role in short-range systems with quenched
disorder, such as the EA model with no external field [8].
In fact, one could imagine short-range systems to behave
as an ensemble of nearly independent subsystems, each
subsystem having its own critical temperature: The finite-
size critical temperature of the systemas awhole is then given
by the smallest of the subsystems’ critical temperatures [8].
This raises the possibility that the critical temperature
of the system as a whole could be distributed according
one of the three EVS distributions of independent and
identically distributed random variables: The Gumbel,
Fréchet, or Weibull distribution, as predicted by the
extreme-value theorem [29].
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