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We show analytically and through three-dimensional particle-in-cell simulations that nonlinear wake-
fields driven by Laguerre-Gaussian laser pulses can lead to hollow electron self-injection and positron
acceleration. We find that higher order lasers can drive donut shaped blowout wakefields with strong
positron accelerating gradients comparable to those of a spherical bubble. Corresponding positron focusing
forces can be more than an order of magnitude stronger than electron focusing forces in a spherical bubble.
Required laser intensities and energies to reach the nonlinear donut shaped blowout are within state-of-the-
art experimental conditions.
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Laser plasma interactions play a central role in several
applications ranging from table-top laser wakefield accel-
erators (LWFA) [1,2] and light sources [3] to laser fusion
[4]. So far, laser plasma research has been geared towards
the use of drivers with Gaussian transverse profiles. Using
these laser drivers in LWFA, for instance, lead to remark-
able achievements [5]. Important LWFA experimental
results have been reached in the strongly nonlinear bubble
or blowout regime [6–8]. The blowout provides higher
accelerating gradients (≲1 GeV=cm) and efficiencies in
comparison to the linear regime. In addition, it also
provides linear accelerating and transverse focusing forces,
where electrons can accelerate with minimal emittance
growth [9]. Thus, the nonlinear regime of LWFA has the
potential to lead to a high quality electron source for
science and applications.
Although ideally suited for electron trapping [10] and

acceleration [11], the blowout is not adequate for positron
acceleration. Instead of bringing positrons towards the
axis, the transverse focusing force in the blowout regime
defocuses positrons everywhere except in a narrow region
where plasma electrons cross the axis at the back of the
bubble. Several positron acceleration schemes were then
proposed to optimize positron acceleration in plasmas. The
nonlinear suck-in regime, for instance, provides positron
accelerating and focusing fields similar to the linear or
mildly nonlinear regime [12]. Hollow plasma channels
[13,14] were also proposed for positron acceleration in the
linear regime [15]. Despite these advances, studying new
configurations for positron acceleration in the nonlinear
regime is important and may impact a future plasma based
linear collider.
There has been an increasing interest on the interaction

between plasmas and lasers with orbital angular momen-
tum (OAM). The production of these lasers, described by
higher order Laguerre-Gaussian modes, is currently well
understood [16]. Raman and Brillouin backscattering [17],

and the inverse Faraday effect were then recently examined
[18] using higher order lasers in plasmas. Linear wakefield
excitation by lasers with OAM was also recently inves-
tigated [19]. Nevertheless, the use of these lasers to drive
nonlinear wakefields for electron and positron acceleration
is still unexplored.
In this work we demonstrate analytically and through

3D particle-in-cell (PIC) simulations in OSIRIS [20] that
laser pulses with OAM can excite high-gradient positron
focusing and accelerating wakefields in the nonlinear
regime. We show that there are two limiting scenarios:
at lower intensities, close to the onset of the blowout, the
driver excites a donut bubble that can trap and accelerate
hollow electron bunches, which can be relevant for appli-
cations [21]. At higher laser intensities, the inner electron
sheath that surrounds the donut wakefield merges on axis.
This results in strongly nonlinear wakefields that can focus
and accelerate positrons. Moreover, the resulting focusing
force can be more than an order of magnitude stronger than
in pure ion channels.
To investigate wakefield excitation by lasers with

OAM, we adopt the comoving frame variables, where
ðx; y; ξ ¼ z − ct; tÞ, with ðx; yÞ the transverse coordinates,
and t and z the time and propagation distance. In addition,

we use cylindrical coordinates where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the

distance to the axis and where θ is the azimuthal angle.
The normalized vector potential (aL ¼ eAL=mec) of
a laser with OAM at the focus is given by
aLðr; ξÞ ¼ a0a∥ðξÞarðrÞ, where a0 is the peak laser vector
potential, a∥ðξÞ is the longitudinal intensity profile nor-
malized to a0, and arðrÞ is the transverse laser profile given
by arðrÞ ¼ cl;pðr=w0Þjlj exp ð−r2=w2

0 þ ilθÞLjlj
p ð2r2=w2

0Þ,
where w0 is the spot size, Ll

p a Laguerre polynomial with
radial index p and azimuthal index l, and where cl;p are
normalizing factors. Unless explicitly stated, we normalize
electric fields E to mec2ωp=e, magnetic fields B to
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mecωp=e, vector potentials A to mec=e, distances x to
c=ωp, and time t to ωp. Hereme and e are the electron mass
and charge, ωp the plasma frequency, and c the speed of
light. Density is normalized to the background plasma
density n0 and velocity v to c.
Linear theory for wake excitation by lasers with OAM

was derived in the limit where the laser central frequency
(ω0) respects ω0=ωp ≫ 1. Corresponding accelerating (Ez)
and focusing (Wr) wakefields acting on a relativistic
particle are Ez¼−ð1=4ÞR ξ

−∞ sinðξ−ξ0Þ½∂a2Lðr;ξ0Þ=∂ξ�dξ0
[15,19,22], and ∂Wr=∂ξ ¼ ∂Ez=∂r with Wr ¼ Er − Bθ,
and where Er and Bθ are the transverse electric and
azimuthal magnetic fields. For a flattop laser pulse with
a∥ ¼ ΘðξÞ − Θðξ − λp=2Þ, where ΘðxÞ is the Heaviside
step function, and ðl; pÞ ¼ ð1; 0Þ,

Ez ¼ −
aðrÞ2
2

sinðξÞ; (1a)

Wr ¼
aðrÞ2
r

�
1 −

2r2

w0
2

�
cosðξÞ; (1b)

for ξ > λp=2. Equation (1a) shows that the amplitude
of the wakefield is maximized in the region where a2rðrÞ
is maximum, i.e., in a donut shaped region around
rm ≃ w0=

ffiffiffi
2

p
. In addition, Eq. (1) shows that Ez and Wr

overlap for λp=4 (λp is the plasma wavelength) within the
donut shaped region. Although with lower accelerating
gradients, electrons, and positrons can also accelerate
around r ¼ 0, for which the overlap between focusing
Wr and accelerating Ez fields also occurs for λp=4.
To show that nonlinear donut wakefields can focus and

accelerate positrons and electrons, we start by examining a
scenario where the laser intensity is marginally above the
threshold for the blowout regime. Figure 1 shows simu-
lation results using a laser with ðl; pÞ ¼ ð1; 0Þ, a0 ¼ 3.2,
w0 ¼ 7c=ωp, FWHM duration τ ¼ 4=ωp, and ω0=ωp ¼ 5.
Considering λ0 ¼ 2πc=ω0 ¼ 800 nm this corresponds to a
laser with ≃140 mJ, w0 ¼ 4.5 μm, and with τ ¼ 10 fs
propagating in a plasma with n0 ¼ 6.9 × 1019 cm−3. The
simulation uses a moving window propagating at c, with
dimensions 20 × 62.5 × 62.5ðc=ωpÞ3, divided into 3000 ×
325 × 325 cells with 2 × 1 × 1 particles per cell.
Figure 1(a) shows a self-injected hollow electron bunch.

This is in stark contrast with self-injection in the spherical
blowout regime, which produces cylindrical beams. In
addition to their fundamental importance (they can carry
currents exceeding the Alfvén current [23]), hollow
bunches can also be relevant for applications. For instance,
it has been recently shown that hollow beams could be used
as compact collimators for proton bunches in conventional
accelerators [21].
Figure 1(b) shows a transverse density slice of the donut

wakefield. The darker density ring corresponds to the self-
injected bunch. The lighter density rings, inside and outside

of the darker electron ring, define the donut bubble radially.
This structure provides focusing forces that are well
described by the analytical scaling for the spherical blow-
out, Wr ¼ ðr − rmÞ=2, as shown by Fig. 1(b). Hollow
bunch electrons then perform betatron oscillations around
rm ≃ w0=

ffiffiffi
2

p
. Corresponding betatron radiation patterns

may lead to the generation of hollow x rays. Longitudinal
slices of the donut wakefield [Fig. 1(c)] reveal that the
donut wakefield appears as two symmetric bubbles. The
accelerating fields at r ¼ rm [blue line in Fig. 1(c)]
also follow the scalings for the spherical blowout,
Ez ¼ ξ=2ðmecω2

p=eÞ [red line in Fig. 1(c)] [7,8,11].
Since both Ez andWr are well described by the spherical

blowout scaling laws, we can then use them to estimate the
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FIG. 1 (color online). OSIRIS simulation result of a hollow
self-injected electron bunch. (a) Green-blue colors are plasma
density isosurfaces. White-blue spheres are self-injected electrons
colored according to their energy (higher energy in white and
lower energy in blue). Projections show the plasma density in
gray and laser fields in orange-red-brown colors. (b) A transverse
slice of the wakefield (laser propagates outside the plane)
superimposed by a transverse lineout of plasma focusing fields
took in the region where rb is maximum. Simulation results are in
blue and analytical theory in red. (c) A transverse slice of the box.
A lineout of the accelerating gradient taken at the center of
the bubble is shown in blue and theoretical prediction in red.
The solid black line is a lineout of the plasma density at
z ¼ 110 c=ωp. (d) The plasma phase space, where the hollow
electron bunch gains up to 35 MeV. Arrows indicate the direction
of laser propagation.
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maximum hollow bunch energy gain (ΔE). For the param-
eters of Fig. 1, ΔE≃ ð2=3Þmec2ðω0=ωpÞ2 ffiffiffiffiffi

a0
p ≃ 27 MeV

[11], close to the maximum energies observed in Fig. 1(d).
Simulations also showed that the laser is self-guided by the
donut blowout during electron acceleration, confirming that
energy is efficiently transferred from the laser to the hollow
bunch. Although more refined models can be constructed,
these results indicate that spherical blowout theory appears
to accurately predict key donut wakefield properties in the
blowout regime.
Donut bubble transverse wakefields are able to focus and

accelerate positrons on axis when the laser radial ponder-
omotive force is sufficiently intense to push the inner donut
electron sheath towards r ¼ 0. When this occurs, the
electron charge density on axis rises above the background
plasma ion density, resulting in a positron focusing field.
This condition is met when the donut blowout radius,
rb ≃ 2

ffiffiffiffiffi
a0

p
, matches rm ¼ w0=

ffiffiffi
2

p
, i.e., when a0 ≃ w2

0=8 in
our normalized units. We can predict the resulting positron
focusing force analytically by recalling that in the blowout,
Wr ¼ Er − Bθ is electromagnetic in character due to the
presence of strong plasma currents. Under the quasistatic
approximation and in the Lorentz gauge, Er ¼ −∂rϕ −
∂ξAr and Bθ ¼ −∂rAz − ∂ξAr, where ϕ is the scalar
potential, and where Ar and Az are the radial and longi-
tudinal plasma (slow varying) vector potentials. As a
result, Er−Bθ¼−∂rϕþ∂rAz¼−∂rðϕ−AzÞ¼−∂rψ . The
plasma pseudopotential ψ ≡ ϕ − Az hence fully determines
Wr, including the contributions from the ion and electron
density distribution, and plasma currents [24]. To obtain an
expression for ψ, we solve −∇2⊥ψ ¼ 4π½neð1 − v∥Þ − 1�,
or, equivalently, ψ ¼ lnðrÞR r

0 r
0dr0fneðr0Þ½1−vzðr0Þ�−1gþR∞

r lnðr0Þr0fneðr0Þ½1−vzðr0Þ�−1g [24], where ∇2⊥ ¼
ð1=rÞ∂rðr∂rψÞ is the transverse Laplacian, and where
neð1 − v∥Þ − 1 is the source term for ψ. We consider a
simplified model for neð1 − vzÞ shown in Fig. 2(a), where

the blue line represents the simulation neð1 − vzÞ, and the
red line, the simplified model for the calculation. Values for

neð1 − v∥Þ at r ¼ 0 (nð1ÞΔ ) and at the bubble wall (nð2ÞΔ ) can
be derived by noticing that d=dξfR ½neð1 − v∥Þ�dx⊥g ¼ 0;
i.e., neð1 − vzÞ is conserved in each transverse slice.
Assuming further that

R Rb=2
0 ½neð1 − v∥Þ − 1�dx⊥ ¼R RbþΔ

Rb=2
½neð1 − v∥Þ − 1�dx⊥ ¼ 0, then nð1ÞΔ ¼ R2

b=ð4Δ2Þ
and nð2ÞΔ ¼ ½ðRb þ ΔÞ2 − ðRb=2Þ2�=½ðRb þ ΔÞ2 − R2

b�,
where Δ is the thickness of the electron layers defining
the donut blowout [see Fig. 2(a)]. In the relativistic blowout
regime Rb ≫ 1 and Δ ≪ Rb such that

ψ ¼ 1

8

�
2ðR2

b − r2Þ þ R2
b ln

�
r
Rb

��
þ 3R2

bα

16
; (2)

for Δ < r < Rb, where Rb ¼ 2rb, and where α ≡
Δ=Rb ≪ 1. In addition,

ψ ¼ r2

16α2
þ 1

16
f−4r2 þ R2

b½3þ 2 lnðαÞ�g; (3)

for r < Δ < Rb. The focusing force is thus

Wr ¼
r
2
−
R2
b

8r
; (4)

for Δ < r < Rb. The first term in Eq. (4) is due to the ion
column and the second to the thin on-axis electron layer.
In addition,

Wr ¼
r
2

�
1 −

1

4α2

�
; (5)

for r < Δ < Rb. The first term in Eq. (5) is due to the ion
column and the second due to the on-axis electron layer.
Equation (5) reveals that positron focusing fields in

donut bubbles can be much higher than the electron
focusing fields in spherical bubbles for r < Δ.
According to Eq. (5) for α ≪ 1, the on-axis positron
focusing force is Weþ

r ≃ r=ð8α2Þ, whereas for a pure ion
spherical bubble We−

r ¼ 1=2. Hence, for α≃ 1=10,
Weþ

r =We−
r ≃ 50. This may lead to higher frequency x-ray

emission by positron bunches in the donut blowout than by
electrons in a pure ion spherical bubble [25]. The width of
the positron focusing region extends well beyond the width
of the on-axis electron layer, lasting from 0 < r < Rb=2.
Moreover, we note that although they may vary due to the
dynamics of the inner donut sheath, positron accelerating
fields are of the same order of magnitude of those of the
spherical blowout. Positron acceleration can therefore
occur for the first half of the donut.
We confirmed these findings in 3D PIC simulations.

Figure 2 was obtained using identical simulation param-
eters to Fig. 1, except for the laser a0. The onset of positron
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FIG. 2 (color online). OSIRIS simulation result illustrating
large amplitude focusing and accelerating fields for positrons in
nonlinear regimes. (a) Transverse slice of neð1 − vzÞ. The blue
line is a lineout at z ¼ 115 c=ωp, and the red line is the simplified
model. The quantities Rb, rm, Δ, n

ð1Þ
Δ , and nð2ÞΔ are also indicated.

(b) Transverse slice of the transverse focusing force. The blue line
is a lineout at z ¼ 115 c=ωp, the red line is the theoretical result,
and the dashed green line is the theory for the spherical blowout.
(c) Transverse slice of the accelerating electric field. The arrow
indicates the direction of laser propagation.
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focusing and acceleration fields on axis for the laser spot
size of the simulation shown in Fig. 1 (w0 ¼ 7c=ωp) is
a0 ≃ 6.12. Figure 2, in which a0 ¼ 8 > 6.12, then con-
firms that rb > w0 and that the inner donut bubble electron
sheath merges on axis. These parameters correspond to a
laser pulse energy of ≃850 mJ. Figure 2(a) shows that the
motion of the boundary RbðξÞ resembles that of a spherical
bubble. Figure 2(b) confirms that the donut bubble focusing
fields are much higher than those of a spherical bubble, and
that in this case Weþ

r =We−
r ¼ 14. In addition, Fig. 2(b)

shows that simulation results forWr are in good agreement
with Eqs. (4) and (5) using Rb ¼ 11.8 and Δ ¼ 1.5. Values
for Rb and Δ were retrieved directly from Fig. 2(a) at
z ¼ 113.5c=ωp. Figure 2(c) shows very large positron
accelerating gradients that overlap with positron focusing
wakefields for the first half of the bubble. The peak positron
accelerating field in Fig. 2(c) is 15 GV=cm, higher than the
peak electron accelerating field at the back of the donut.
We performed simulations to demonstrate the acceler-

ation of a witness positron bunch in the donut wakefields.
Figure 3 shows an OSIRIS 3D simulation result using a
laser pulse with ðl; pÞ ¼ ð1; 0Þ, w0 ¼ 6.6c=ωp, a0 ¼ 6.8,
ω0=ωp ¼ 15, and τ ¼ 3=ωp (shorter than in the previous
simulations to reduce interaction between positrons and
laser). We placed a low charge (to avoid beam loading)
flattop witness positron bunch with a length of 1c=ωp and
transverse radius 3c=ωp in regions where initial positron
accelerating fields were close to maximum. The witness
bunch was injected with γ ¼ 200 (ensuring that all posi-
trons are trapped) with zero energy spread and zero
emittance. These parameters correspond to a laser with
w0 ¼ 12.6 μm, τ ¼ 19 fs, and and energy of 2 J propa-
gating in a plasma with n0 ¼ 7.7 × 1018 cm−3. For this

plasma density the witness bunch is 3.84 μm long and
5.76 μm wide. Numerical simulation parameters are iden-
tical to those of Fig. 1.
Figures 3(a)–3(b) show that the donut bubble can guide

the laser pulse. We found that the self-guiding condition for
the spherical blowout regime, given by w0 ≃ rb ≃ 2

ffiffiffiffiffi
a0

p
,

can also be used as an estimate for the self-guided
propagation of a donut shaped laser. This can be attributed
to the fact that the donut bubble refracting index gradient,
which determines the laser dynamics, is identical to that of
spherical bubbles (the simulation of Fig. 3 then used
w0 ¼ 6.6, close to 2

ffiffiffiffiffi
a0

p ≃ 5.2). Although the on-axis
electron sheath oscillates during the laser propagation for
these parameters, the plasma wave still provides positron
accelerating and focusing fields. Figures 3(a)–3(c) show
that the laser drives a stable wakefield ensuring positron
acceleration until the laser energy is a small fraction of its
initial energy. This is confirmed by the inset of Fig. 3(d),
revealing constant acceleration gradients during propaga-
tion. The resulting (normalized) average accelerating
gradient is Eaccel ≃ 1.5, much larger than that of the linear
regime where Eaccel ≪ 1. After z ¼ 518c=ωp, the mean
positron bunch energy gain is ΔE≃ 400 MeV [Fig. 3(d)],
similar to the mean energy gain of self-injected electrons.
Simulations also show that, in agreement with analytical
predictions, the transverse donut shaped wakefields focus
the positron bunch even though its initial radius is much
wider than the on-axis electron sheath.
We note that simulations using hollow electron bunch

drivers showed similar initial positron focusing and accel-
eration regions in nonlinear regimes. These simulations
then indicate that our results are determined by the intensity
profile of the driver, being independent of its phase content.
In conclusion, we investigated self-injection of hollow

electron beams and positron acceleration in donut shaped
wakefields driven by Laguerre-Gaussian laser pulses with
OAM in the nonlinear regime analytically and with 3D PIC
simulations. The onset of positron focusing and accelerating
fields occurs when the electron sheath at the inner wall of
donut shaped blowout merges on axis. Resulting positron
focusing could lead to enhanced betatron x-ray radiation
emission regimes in comparison to electrons in the spherical
blowout regime. More detailed understanding of externally
guided and self-guided regimes will be important to improve
the stability of positron and electron acceleration. Other
future research directions also include donut wakefield
excitation by particle drivers and radially polarized lasers.
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FIG. 3 (color online). OSIRIS simulation result illustrating
positron acceleration in the wake driven by a laser pulse with
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(orange), and witness positron bunch (blue) colored according
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