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Laser-induced tunnel ionization from a coherent superposition of electronic states in Arþ is studied in a
kinematically complete experiment. Within a pump-probe scheme a spin-orbit wave packet is launched
through the first ionization step from the neutral species. The multielectron coherent wave packet is probed
as a function of time by the second pulse which ionizes the system to Arþþ. By measuring delay-dependent
electron momentum distributions we directly image the evolution of the nonstationary multielectron wave
function. Comparing the results with simulations we test common assumptions about electron momentum
distributions and the tunneling process itself.

DOI: 10.1103/PhysRevLett.112.213001 PACS numbers: 32.80.Fb, 33.60.+q, 42.50.Hz, 82.53.Hn

Electron tunneling is a key ionization mechanism for
atoms and molecules exposed to strong laser fields [1–3].
It has been investigated and characterized in numerous
experiments, ranging from studies of intensity-dependent
ionization rates [4] to measurements of electron momentum
distributions [5–7] and streaking experiments [8]. In gen-
eral, strong-field ionization is interpreted as the tunneling
of a bound electron through the potential barrier that is
formed by the combined atomic Coulomb and the laser
electric field. Once the electron is set free, its motion is
dominated by the interaction with the laser field even
though modified by the long-range ionic Coulomb poten-
tial, which both may lead to various postionization effects
[9,10]. Both steps, tunneling and field acceleration,
are intrinsically entangled, preventing an unambiguous
investigation of the isolated tunneling process itself.
Nonetheless, many modern powerful techniques, such as
electron streaking [11] and the recently established atto-
clock principle [12] rely on a well-defined relation between
the final (measured) electron momentum and the phase of
the laser wave at the moment of tunneling. This relation,
however, which usually is acquired from semiclassical
calculations, is strongly dependent on the electron velocity
right after tunneling.
In this Letter we report on measurements using a

coherent superposition of states in Arþ as a dynamic initial
electronic state subject to further tunneling ionization to
Arþþ. We present electron momentum distributions for
both steps of the sequence and study the delay dependence
of the second ionization step. We find a clear dependence
on the initial electronic state, extract information about
the tunneling process, and image the multielectron wave
function in the ion by comparing the results to simulations.
For the longitudinal momentum distribution, along the

laser polarization axis, the acceleration of the electron is the
dominant factor. It leads to a significant broadening and
modification of the initial momentum distribution of the

unperturbed electrons appearing in the continuum right
after tunneling [13]. A common assumption widely used
for simulations is a vanishing longitudinal velocity directly
after tunneling (e.g., [9,14,15]) while also other hypotheses
were stated, e.g., a velocity distribution of finite width (e.g.,
[16,17]) or a dependence on the bound-state momentum
distribution [18]. For the transverse momenta, perpen-
dicular to the polarization, the situation is substantially
different. As the electron does not experience any laser
acceleration in this direction, the measured distribution is
influenced only by the Coulomb interaction of the ejected
electron with its parent ion. Thus, it is expected that the
measured momentum reflects to some extent the initial
momentum spectrum right after tunneling. Based on early
results ([13,19] and references therein) the momentum
distribution in strong field ionization neglecting the
Coulomb interaction was recently predicted to be a direct
image of the bound-state momentum [7,18,20–22]: The
atomic wave function in momentum space—in the follow-
ing ~ψ ðn;l;Þm with magnetic quantum numberm—is projected
onto the continuum by the tunneling process. The latter acts
at the same time as a “filter” that suppresses ionization
at large momenta. This leads to a transverse momentum
distribution of [7]

Wm⊥ðp⊥Þ ¼ j ~ψmðp⊥Þj2 exp
�
−

ffiffiffiffiffiffiffi
2Ei

p
F

p2⊥
�
: (1)

Here, Ei is the ionization potential, F the laser electric field,
andp⊥ the electronmomentumalong aCartesian coordinate
perpendicular to the laser polarization axis, the axis of
quantization. The exponential term represents the Gaussian-
shaped filter with an intensity-dependent width that arises
from standard tunneling theory [13,19]. Though this equa-
tion is frequently used for the interpretation of experimental
findings [6,7,20], it has never been verified explicitly in any
experiment to the best of our knowledge.
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In the experiment we use pairs of identical ultrashort
(≈ 7 fs), intense (≈ 5 × 1014 W=cm2) and linearly polar-
ized laser pulses at a central wavelength of 790 nm in a
pump-probe scheme. Single laser pulses are created by a
commercial Ti:sapphire laser with subsequent spectral
broadening in a neon-filled hollow fiber and chirped-mirror
pulse compression. By passing a beam splitter and a
piezocontrolled Mach-Zehnder interferometer, pulse pairs
with an adjustable time-delay τ are produced. The pulses
are focused onto a dilute beam of argon atoms provided
by a supersonic gas jet inside a reaction microscope. The
pressure in the chamber is on the order of 10−11 mbar
resulting in a very low level of background signals. This is
crucial for the two- and three-particle coincidence mea-
surements performed here. The laser polarization is parallel
to the weak electric (≈ 2 V=cm) and magnetic fields
(≈ 600 μT) that are used to guide the charged particles
(ions and electrons) onto time- and position-sensitive
detectors. The spectrometer provides kinematically com-
plete data with an electron momentum resolution of about
Δp⊥ ¼ 0.02 a.u. for the transverse andΔp∥ ¼ 0.01 a.u. for
the longitudinal component, respectively [atomic units (a.u.)
are used unless otherwise stated]. The technical details are
given elsewhere [23]. The laser pulse intensity is determined
from the width of the measured longitudinal momentum
distribution of Arþ ions [13,19].
In the data analysis we exclusively use events where

all charged particles, e.g., an Arþþ ion and two electrons,
are recorded in coincidence. This further reduces possible
contributions from false coincidences by requiring con-
servation of the particles’ sum momentum. The momentum
distribution arising from the first step of the sequence,
Ar → Arþ, is obtained from electrons measured in coinci-
dence with Arþ. To determine the electron momentum
distribution for the second step, Arþ → Arþþ, we first
create the spectrum that contains both electrons registered
in coincidence with Arþþ. Afterwards, we subtract the
measured distribution for the single ionization of neu-
tral Ar → Arþ.
A time-dependent dynamical initial state is created by

launching a multielectron wave packet in the Arþ ion for
further tunneling. As it was shown theoretically [22,24] and
demonstrated experimentally [25–27] this can be achieved
by ionizing neutral Ar with a short and strong laser pulse
delivered in our experiment by the first pump pulse
which also decouples the atomic states. Ionization from
the spin-orbit decoupled orbital with m ¼ 0 dominates [3]
and, therefore, we neglect ionization from other orbitals.
After the pump pulse is over, and after projection onto the
appropriate spin-orbit coupled eigenstates in the field-free
environment, the two lowest coupled states P1=2 and P3=2
of the Arþ ion are coherently populated resulting in a
spin-orbit wave packet (SOWP) that evolves in time with
a period of T ≈ 23.3 fs [22,25]. Because of the absence of
allowed decay channels, this oscillation is extremely stable

and could recently be observed even after nanoseconds
[25]. If the removed electron is interpreted as a hole in the
electronic shell initially aligned along the laser polarization
[22,24], one-particle equations can be used to describe the
dynamical evolution of the Arþ target. The probability to
find the hole in them ¼ 0 orbital after a time delay τ is then
to good approximation given by [22,28]

Pm¼0ðτÞ ¼
5

9
þ 4

9
cos

�
ΔE
ℏ

τ

�
: (2)

Here, ΔE ≈ 0.1775 eV [29] is the energy difference
between the two states (P1=2 and P3=2). Directly after
the creation of the SOWP and at full periods, only one of
the five remaining valence electrons is in them ¼ 0 orbital,
while at half periods the electron occupation reaches a
value of 17=9. Thus, by choosing the time delay τ, the
electronic structure of the target can be controlled and the
electron population in them ¼ 0 orbital changes within this
range. As a consequence of the dominating ionization from
the m ¼ 0 orbital a high Arþþ yield is obtained at delays
τ ¼ ðiþ 1=2ÞT, where the electron density in this orbital
is at its maximum. As a function of the pump-probe delay
time, the yield follows a sinusoidal oscillation with period
T [22,25] which is reflecting the hole dynamics. Here, we
utilize the oscillation to obtain the phase of the created
SOWP and to get information about the shape of the Arþ
orbital in the moment of second ionization. The chosen
intensity is on one hand high enough to ensure that double
ionization of Ar takes place in a sequential process [30]
(Keldysh parameter γ ≈ 0.7 [1,10] for the second step
justifying the tunneling picture). On the other hand, atoms
are at most singly ionized by the pump pulse. In fact, a
double to single ionization ratio of only about 8%,
integrated over all time delays τ, was observed.
Figure 1 shows the measured Arþþ yield as a function

of τ together with a sinusoidal fit to the data. The slow
oscillation of T ≈ 23.3 fs results from the electronic
dynamics in Arþ created by tunnel ionization in the first
pulse, probed by further ionization to Arþþ in the second
pulse. Only the temporal region in which the pulses are not
overlapping is analyzed. However, optical-cycle (≈ 2.8 fs)
interference structures caused by the pulse’s pedestals are
still visible.
The transverse momentum distribution for ionization

of the dynamical Arþ target can be calculated using the
time-dependent relative occupations of the orbitals and
the corresponding theoretically predicted distributions [22],
Eq. (1). For our simulation we use Ammosov-Delone-
Kraı̌nov-ionization rates [3] γm with an effective charge
Z� ¼ ffiffiffiffiffiffiffi

2Ei
p

n to calculate the delay-dependent ionization
yields. Utilizing Z� instead of an effective main quantum
number n� (as done, e.g., in [3]) scales the absolute rates by
a common factor but preserves the relative ratios. In fact,
γm¼0=γjmj¼1 ¼ 2Z�3=Fn3 ¼ 2ð2EiÞ3=2=F [3] only depends
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on the ionization potential and the field strength of the laser.
The actual quantum number n ¼ 3 is also consistently
used to compute Eq. (1) with Z�-scaled hydrogenic wave
functions in momentum space [31]. Alternatively, a scaling
using Slater’s rules [32] or numerically obtained values
for the effective charge [33] as done, e.g., in [20] would
also be possible. To keep consistency within our model
calculation and to reproduce the correct ionization potential
in the hydrogenic picture we use Z� as described above.
The projections of the squared wave functions and the
Gaussian-shaped filter function [see Eq. (1)] for the first
ionization step, Ar → Arþ, are shown in Fig. 2(a).
The measured momentum distributions W⊥ðp⊥Þ are

shown in Figs. 2(b) and 2(c). They are obtained after
integration of all longitudinal electron momenta. In addi-
tion, the theoretical curves for the total signal as well as
the contributions from different orbitals are plotted. For
the second ionization step, starting from a coherent
superposition of states in Arþ, the theoretically predicted
contributions from different orbitals, and thus the widths
of the distributions, change slightly with the time-delay τ.
Because of the preferential ionization from the m ¼ 0
orbital and the relatively narrow filter function the overall
distributions are almost Gaussian-like with slight devia-
tions due to the shape of the initial electronic states [light
green areas in Fig. 2(c)]. The experimental data presented
here are averaged over all recorded cycles of the SOWP. At
first glance, the disagreement with theory is striking. While
the experimental data show sharp cusplike peaks at
zero momentum, an almost Gaussian-shaped distribution
is obtained from theory. This behavior has been observed
before for ionization of noble gases by intense, linearly
polarized laser fields [5]. The attractive Coulomb inter-
action between the outgoing electron and the parent ion,
which is not included in the present theory, causes a
significant modification of the transverse momentum dis-
tribution with a focusing of events at zero momentum. Very
similar cusp-dominated electron spectra are observed in

ionizing ion-atom collisions at very high energies [34,35].
There it was also shown that the shape of the atomic bound-
state momentum distribution is imprinted, at least partly, in
the momentum spectrum of the ionized electrons. In the
following we will elucidate the question whether the same
holds true for the case of strong-field ionization andwhether
the predicted influence of the bound-state wave function ~ψ
[see Eq. (1)] on the electron momentum distribution can be
observed despite the final-state Coulomb interaction.
In the theoretical model, neglecting the Coulomb inter-

action, the width of the transverse momentum distribution
depends on (i) the shape of the bound-state wave function
in momentum space, (ii) the relative contributions from
the different orbitals, and (iii) the width of the Gaussian
filter function. Considering an ionic target Arþ compared
to neutral Ar, (i) broadens the distribution while (ii) and
(iii) are compensating for this effect. In order to visualize
the expected small variations in the electron momentum
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FIG. 2 (color online). (a) The squared wave functions projected
onto the transverse momentum axis (solid lines) and the filter
term F̂ðp⊥Þ (dashed line) from Eq. (1) for the first ionization step
of neutral Ar. (b) Symmetrized experimental electron momentum
distributionW⊥ðp⊥Þ (bars) and theoretical prediction (red dashed
curve). In addition, the relative contributions of the individual
orbitals Wm⊥ are plotted [color code as in (a)]. The Wjmj¼1

⊥ part is
multiplied by 10 for better visibility. (c) Same as (b) for the
second ionization step. Here, the contributions of the different
orbitals are time dependent. The experimental data are averaged
over all recorded cycles of the SOWP; corresponding theoretical
distributions are shown as solid lines. The light green areas
indicate the expected variation as a function of τ. For the m ¼ 0
contribution (blue curve) and the total yield (red dashed curve)
the latter is barely visible.
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FIG. 1 (color online). Delay-dependent yield of Arþþ unveiling
the SOWP dynamics in Arþ together with a sinusoidal fit to the
data (solid line). Spikes arise from optical interferences with pulse
pedestals. The yield maximizes for maximum occupation in the
m ¼ 0 state as sketched by light and dark blue orbitals in the insets
(vertical laser polarization ε̂).

PRL 112, 213001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
30 MAY 2014

213001-3



spectrum caused by the SOWP dynamics in Arþ, we sub-
tract the measured time-averaged momentum distribution
W̄ from those obtained at a given time delay after normal-
izing both:

Dðp; τÞ ¼ Wðp; τÞ − W̄ðpÞ: (3)

This difference distribution is very sensitive to small
changes originating from the bound-state SOWP dynamics.
At the same time any contribution from the first ionization
step is canceled out since this step does not depend on τ.
The largest contrast is expected to appear at time delays
where the electron occupation maximizes either in the
m ¼ 0 or jmj ¼ 1 orbital. Therefore, we define two time
windows τ � T=8 around τ ¼ iT (window A in Fig. 1) and
τ ¼ ðiþ 1=2ÞT (window B) and analyze the events therein.
The result for the transverse momenta is shown in

Figs. 3(a) and 3(b), where the measured and calculated
D⊥ distributions are plotted for the two delay-time win-
dows. In order to increase the statistical significance of the
symmetric experimental data we consider the absolute p⊥
values in the following. The theoretical curves are calcu-
lated for fixed times at τ ¼ T and τ ¼ T=2, respectively,
whereas the experimental ones are obtained after averaging
over the width of the time window. In contrast to the direct
comparison in Fig. 2 now the agreement with theory is
remarkably good, indicating that the cusplike structure
in the W⊥ðp⊥Þ distribution, which is not reproduced at all
by our model calculation, is effectively suppressed after
applying Eq. (3). The agreement is impressive considering
the simplicity of our theoretical model, using Ammosov-
Delone-Kraı̌nov rates with scaled hydrogenic wave func-
tions and neglecting the final-state Coulomb interaction
completely. Moreover, the shapes of the calculated

distributions depend on the laser intensity. We like to note
that a similar behavior, namely, a ≈ 15% disagreement in
the momentum widths between experiment and theory, has
recently been reported for tunneling ionization of atoms
with circularly polarized laser fields [7,20].
The same analysis as for the transverse direction can be

done with the longitudinal momentum spectra. The corre-
sponding D∥ distributions are shown in Figs. 3(c) and 3(d).
In this case no dependence on the delay time is found,
indicating that electrons emitted along the field direction do
not carry information about the bound-state SOWP dynam-
ics. This result can be explained by an m-independent
momentum distribution or even an electron momentum of
zero directly after tunneling, in agreement with the common
assumption mentioned in the beginning. However, it is
also possible that an initially existing m dependence on
the momentum distributions is removed by a “bunching”
mechanism caused by soft recollisions of the electrons with
their parent ion [36].
A more complete view on the initial-state dependence of

the transverse momentum distribution in tunneling ioniza-
tion of SOWP excited Arþ is obtained by plotting D⊥ as a
function of both momentum and time. The corresponding
2D plots (experiment and theory) are shown in Figs. 4(a)
and 4(b). The experimental data are integrated over a time
window of τ � T=8with τ now running over one full period
of the SOWP while the theoretical expression is evaluated
at delays τ without averaging. Cuts along τ ¼ T and τ ¼
T=2 result in the spectra shown in Figs. 3(a) and 3(b).
Again, the initial-state dynamics is clearly visible, and
excellent agreement with theory is achieved.
In conclusion, using a reaction microscope for low-

background three-particle coincidence measurements in
combination with ultrashort, strong laser pulses we studied
tunneling ionization of a dynamical target, namely, coher-
ently excited electronic states forming a spin-orbit wave
packet in Arþ. Though the general shapes of the p⊥
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FIG. 3 (color online). (a) and (b) Experimental transverse
momentum distributions after subtraction of the time-averaged
distribution [D⊥ðp⊥; τÞ of Eq. (3), see text] for two delay times
(windows A and B from Fig. 1). Black solid lines denote the
theoretical results for the corresponding time delays τ ¼ iT and
τ ¼ ðiþ 1=2ÞT, respectively. (c) and (d) Corresponding spectra
D∥ðp∥; τÞ for the longitudinal electron momenta.
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PRL 112, 213001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
30 MAY 2014

213001-4



distributions are only barely reproduced with the present
tunneling model, which does not account for the long-range
Coulomb interaction, the initial-state dependence is
remarkably well described with the product ansatz of
Eq. (1). It is clearly demonstrated that the initial-state
momentum distribution is imprinted onto the transverse
momentum spectrum of the ionized electrons. Our results
and future experiments on strong-field ionization from
dynamical states will provide detailed information about
the ionization process and, in addition, about the bound-
state multielectron dynamics in the ion.
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