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The discovery of a standard-model-like Higgs boson and the hitherto absence of evidence for other
new states may indicate that if weakly interacting massive particles (WIMPs) comprise cosmological dark
matter, they are heavy compared to electroweak scale particles, M ≫ mW� , mZ0 . In this limit, the absolute
cross section for a WIMP of given electroweak quantum numbers to scatter from a nucleon becomes
computable in terms of standard model parameters. We develop effective field theory techniques to analyze
the heavyWIMP limit of WIMP-nucleon scattering and present the first complete calculation of the leading
spin-independent cross section in standard model extensions consisting of one or two electroweak
SUð2ÞW × Uð1ÞY multiplets. The impact on scattering cross sections of the choice of WIMP quantum
numbers and an extended Higgs sector is investigated.
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Introduction.—Cosmological evidence for dark matter
(DM) consistent with weakly interacting massive particles
(WIMPs) motivates laboratory searches for such particles
interacting with nuclear targets. Search strategies and
detection potential are highly dependent on the WIMP’s
properties including its spin, its mass M, and its standard
model (SM) gauge quantum numbers. In the absence of
other signals to guide the search for physics beyond the
SM, it is important to identify plausible cross section
targets to guide and interpret next generation searches.
The discovery of a SM-like Higgs boson [1] and the

hitherto absence of evidence for other new statesmay suggest
that a WIMP, if it exists, is heavy compared to electroweak
scale particles (M ≫ mW� ,mZ0). In this limit, heavy-particle
methods provide theoretical control without assuming a
particular ultraviolet completion, allowing us to predict
the absolute cross section for a WIMP of given electroweak
quantum numbers to scatter from nucleons in terms of SM
parameters. This universality is similar to that underlying the
predictions of heavy-quark spin symmetry (mb ≫ ΛQCD) or
nonrelativistic atomic spectra (me ≫ 1=a∞).
The SM exhibits a surprising transparency of nucleons to

WIMP scattering, due to a cancellation between spin-0 and
spin-2 amplitude contributions [2,3]. Robust cross section
predictions demand a complete treatment of both pertur-
bative and hadronic uncertainties, including resummation
of large logarithms in perturbative QCD (pQCD). In the
heavy-particle limit, there is also an intricate interplay
between mass-suppressed mixed-state contributions and
loop-suppressed pure-state contributions. To analyze these
phenomena, we construct the effective field theory (EFT)
for heavy WIMPs interacting with SM Higgs and electro-
weak gauge fields. For the SM extensions under consid-
eration, we present the first computation of the leading
1=M0 cross section including matching at leading order in

perturbation theory onto the complete basis of operators at
the electroweak scale. We summarize here several phe-
nomenological results of this analysis and present details in
companion papers [4,5].
Heavy WIMP effective theory.—A large class of models,

e.g., neutralinos of supersymmetric SM extensions [6], have
aWIMP as the lightest state of a new sector. In this situation,
the SM is extended at low energies by one or a few particles
transforming under definite representations of SM gauge
groups. While our analysis is not wedded to supersymmetry
(SUSY), SUSY is one of the most-studied SM extensions,
and we adopt doublet (“Higgsino”) and triplet (“wino”)
gauge representations as illustrations of “pure states.” We
also consider singlet-doublet (“bino-Higgsino”) and triplet-
doublet (“wino-Higgsino”) combinations as examples of
“mixed states.”
If particles of the new sector are heavy compared to SM

particles (M ≫ mW), we may integrate out the mass scale
M using heavy-particle EFT. At leading order in the 1=M
expansion, the heavy-particle Lagrangian with timelike
reference vector vμ is

L ¼ h̄v½iv ·D − δm − fðHÞ�hv þOð1=MÞ; (1)

where hv is a heavy-particle field transforming in a
representation of electroweak SUð2ÞW and Uð1ÞY , with
respective coupling constants g2 and g1. The matrix fðHÞ
describes linear coupling to the Higgs field, and the residual
mass matrix δm accounts for nondegenerate heavy-particle
states.
For extensions with one electroweak multiplet (pure

states), the above Lagrangian is completely specified by
electroweak quantum numbers since gauge invariance
implies fðHÞ ¼ 0, and δm can be chosen to vanish for
degenerate heavy-particle states. In particular, the first term
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in Eq. (1) does not depend on theWIMPmass, spin, or other
properties beyond the choice of gauge quantum numbers.
Model dependence is systematically encoded in operator
coefficients representing 1=M corrections. For extensions
with two electroweak multiplets (mixed states), fðHÞ and
δm are nonvanishing and depend on Δ, the mass splitting
of the multiplets, and κ, their coupling strength mediated by
the Higgs field.
Weak-scale matching.—Interactions of the lightest, elec-

trically neutral, self-conjugate WIMP χv, with quarks and
gluons, relevant for spin-independent (SI), low-velocity
scattering with a nucleon, are given at energies E ≪ mW by
the EFT

Lχv;SM ¼ 1

m3
W
χ̄vχv

�X
q

½cð0Þq Oð0Þ
q þ cð2Þq vμvνO

ð2Þμν
q �

þ cð0Þg Oð0Þ
g þ cð2Þg vμvνO

ð2Þμν
g

�
þ � � � ; (2)

where q ¼ u, d, s, c, b is an active quark flavor and we
have chosen QCD quark and gluon operators of definite

spin: Oð0Þ
q ¼mqq̄q, Oð0Þ

g ¼ðGA
μνÞ2, Oð2Þμν

q ¼ 1
2
q̄ðγfμiDνg

− −
gμνiD−=4Þq, and Oð2Þμν

g ¼−GAμλGAν
λþgμνðGA

αβÞ2=4.
Here, Dμ

− ≡ ~Dμ − ⃖Dμ, and AfμBνg ≡ ðAμBν þ AνBμÞ=2
denotes symmetrization. The ellipsis in Eq. (2) denotes
higher-dimension operators suppressed by powers of 1=mW .
We match EFTs of Eqs. (1) and (2) at reference scale

μt ∼mW ∼mt by integrating out weak-scale particles W�,
Z0, h0, and t. In the heavy WIMP limit, matching
coefficients ci of Eq. (2) may be expanded as

ci ¼ ci;0 þ ci;1
mW

M
þ � � � : (3)

We compute the complete set of 12 matching coefficients
ci;0 at leading order in perturbation theory.
Weak-scale matching for mixed states requires renorm-

alization of the Higgs-WIMP vertex for a consistent eval-
uation of loop-level amplitudes and a generalized basis of
heavy-particle loop integrals to account for nonvanishing
residual masses. Details of the matching computation can
be found in Ref. [4].
QCD analysis.—Having encoded physics of the

heavy WIMP sector in matching coefficients of Eq. (2),
the remaining analysis is independent of the M ≫ mW
assumption and consists of renormalization group (RG)
running to a low scale μ0 < mc, matching at heavy quark
thresholds, and evaluating hadronic matrix elements. This
module is systematically improvable in subleading correc-
tions and is applicable to generic direct detection calcu-
lations. An extension of the operator basis would allow
robust connections between contact interactions constrained
at colliders and low-energy observables of direct detection
[7]. RG evolution accounts for perturbative corrections

involving large logarithms, e.g., αsðμ0Þ logmt=μ0. Figure 1
illustrates the impact of higher order pQCD corrections. We
collect in Refs. [3,5] the details of mapping high-scale
matching coefficients onto the low-energy theory where
hadronic matrix elements are evaluated [8]. Cross sections
for scattering on the neutron and proton are numerically
similar; we present results for the latter.
Pure-state cross sections.—Consider the situation where

the SM is extended by a single electroweak multiplet. For
definiteness, let us take the cases of a Majorana SUð2ÞW
triplet of Y ¼ 0 and a Dirac SUð2ÞW doublet of Y ¼ 1=2.
For the doublet, we assume that higher-dimension opera-
tors cause the mass eigenstates after electroweak symmetry
breaking (EWSB) to be self-conjugate combinations D1

and D2, thus forbidding a tree-level χ̄vχvZ0 coupling, and
moreover that inelastic scattering is suppressed.
Upon performing weak-scale matching [4] and mapping

to a low-energy theory for evaluation of matrix elements
[5], we obtain parameter-free cross section predictions as
illustrated in Fig. 2. The triplet cross section is
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FIG. 1 (color online). SI cross section for low-velocity scatter-
ing on the proton as a function of mh, for the pure-triplet case.
Labels refer to the inclusion of LO, NLO, NNLO, and NNNLO
corrections in the RG running from μc to μ0 and in the spin-0
gluon matrix element. Bands represent 1σ uncertainty from
neglected higher order pQCD corrections.
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FIG. 2 (color online). SI cross sections for low-velocity
scattering on the proton as a function of mh, for the pure cases
indicated. Here and in the plots below, dark (light) bands
represent 1σ uncertainty from pQCD (hadronic inputs). The
vertical band indicates the physical value of mh.
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σTSI ¼ 1.3þ1.2þ0.4
−0.5−0.3 × 10−47 cm2; (4)

where the first (second) error represents 1σ uncertainty
from pQCD (hadronic inputs). Subleading corrections in
ratios mb=mW and ΛQCD=mc are expected to be within this
error budget. Stronger cancellation between spin-0 and
spin-2 amplitudes in the doublet case implies a smaller
cross section,

σDSI ≲ 10−48 cm2 ð95%C:L:Þ: (5)

We may also evaluate matrix elements in the nf ¼ 4
flavor theory. Figure 3 shows the results as a function of the
charm scalar matrix element. Cancellation for the doublet
is strongest near matrix element values estimated from
pQCD. Direct determination of this matrix element could
make the difference between a prediction and an upper
bound for this (albeit small) cross section.
Previous computations of WIMP-nucleon scattering

focused on a different mass regime where other degrees
of freedom are relevant [15] or neglected the contribution
cð2Þg from spin-2 gluon operators [2]. For pure states, this
would lead to anOð20%Þ shift in the spin-2 amplitude [16],
with an underestimation of the perturbative uncertainty by
Oð70%Þ. Because of amplitude cancellations, the resulting
effect on the cross sections in Fig. 2 ranges from a factor of
a few to an order of magnitude.
Mixed-state cross sections.—Mixing with an additional

heavy electroweak multiplet (of mass M0) can allow for
tree-level Higgs exchange, but with coupling that may be
suppressed by the mass splitting Δ≡ ðM0 −MÞ=2. We
systematically analyze the resulting interplay of mass-
suppressed and loop-suppressed contributions through an
EFT analysis in the regime mW , jΔj ≪ M, M0.
Consider a mixture of Majorana SUð2ÞW singlet of Y ¼ 0

and Dirac SUð2ÞW doublet of Y ¼ 1=2, with respective

masses MS and MD. The heavy-particle Lagrangian is
given by Eq. (1), where hv ¼ ðhS; hD1

; hD2
Þ is a quintuplet

of self-conjugate fields. The gauge couplings are given in
terms of Pauli matrices τa,

Ta ¼
0
@0 · ·

· τa

4
−iτa
4

· iτa
4

τa

4

1
A− c:c:; Y ¼

0
@0 · ·

· 02
−i12
2

· i12
2

02

1
A: (6)

The couplings to the Higgs field and residual mass matrix
are respectively given by

fðHÞ ¼ g2κ1ffiffiffi
2

p

0
B@

0 HT iHT

H 02 02
iH 02 02

1
CAþ

�
iH → H

κ1 → κ2

�
þ H:c:;

δm ¼ diagðMS;MD14Þ −Mref15; (7)

where Mref is a reference mass that may be conveniently
chosen. Upon accounting for the masses induced by
EWSB, we may present the Lagrangian in terms of mass
eigenstate fields and derive the complete set of heavy-
particle Feynman rules; e.g., the Higgs-WIMP vertex is
given by ig2κ2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2þðΔ=2mWÞ2

p
χ̄vχvh0 with κ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21þκ22

p
and Δ≡ ðMS −MDÞ=2. We may also consider a mixture
of Majorana SUð2ÞW triplet of Y ¼ 0 and Dirac SUð2ÞW
doublet of Y ¼ 1=2. Explicit details for the construction
of the EFT for these heavy admixtures can be found
in Ref. [4].
Upon performing weak-scale matching [4] and mapping

to a low-energy theory for the evaluation of matrix elements
[5], we obtain the results pictured in Fig. 4. For weakly
coupled WIMPs, we consider κ ≲ 1. The presence of a
scale separation M, M0 ≫ mW implies that the partner state
contributes at leading order when jΔj≲mW or more pre-
cisely jΔj ≲mWð4πκÞ2. Within this regime, the purely
spin-0 contributions from tree-level Higgs exchange can
dominate (cf. Ref. [17]). However, whenmW=Δ suppression
is significant, loop-induced contributions become relevant,
and the opposite signs of spin-0 and spin-2 amplitudes
lead to cancellations in the κ-Δ plane. In the decoupling
limit of SUSY, κ depends on tβ and the sign of μ, taking
values κ ≤ ð1=2Þ tan θW (κ ≤ 1=2) for a bino-Higgsino
(wino-Higgsino) mixture.
Extended gauge and Higgs sectors.—A simple dimen-

sional estimate of the pure-state cross section yields
σSI ∼ α42m

4
N=m

6
W ∼ 10−45 cm2 [18]. However, destructive

interference between spin-0 and spin-2 amplitudes leads to
anomalously small cross sections. The degree of cancella-
tion depends on SM parameters such as mh in Fig. 2 and
on the choice of WIMP quantum numbers. Extending
our computation to pure states of arbitrary isospin J and
hypercharge Y, the resulting cross section is minimum
for ðJ; YÞ ¼ ð1=2; 1=2Þ corresponding to the doublet and
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FIG. 3 (color online). SI cross sections for low-velocity
scattering on the proton, evaluated in the nf ¼ 4 flavor theory
as a function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm content
estimated from pQCD [10]. The region between orange (black)
dashed lines corresponds to direct lattice determinations in
Ref. [13] ([14]).
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increases for larger J at fixed Y; e.g., the result for Y ¼ 0
and integer J is σðJ;0ÞSI ¼ ½JðJ þ 1Þ=2�2σTSI.
Additional structure in the Higgs sector may also have

an impact. We illustrate this with a second CP-even Higgs
boson of massmH > mh ¼ 126 GeV, arising in the context
of the type-II two-Higgs-doublet model. Upon including
the contributions of both Higgs bosons, we obtain pure-
state cross sections in terms of mH, tβ ≡ tan β, and η≡
tβ cosðβ − αÞ (following the parametrization in Ref. [21] for
departures from the “alignment limit”). For tβ ≫ 1 and
jηj ≤ Oð1Þ, the couplings of the SM-like Higgs to W�, Z0,
u, c, t are given by 1þOð1=t2βÞ, while those to d, s, b
are given by ð1 − ηÞ þOð1=t2βÞ, measured relative to SM
values. Existing phenomenological constraints are not
sensitive to the sign of the latter, allowing for both η ≈ 0,
2 where the magnitude is near the SM value [22]. Figure 5
shows cross section predictions for pure states with quantum
numbers ðJ; YÞ indicated, including (2,0), the smallest
representation for which WIMP decay by dimension five
operators is forbidden by gauge invariance [19].
Discussion.—We constructed the EFT for heavy WIMPs

interacting with SM gauge and Higgs bosons and used it to
compute predictions with minimal model dependence for
cross sections to be probed in futureDMsearch experiments.
We presented absolute predictions for WIMPs transfor-
ming under irreducible representations of SUð2ÞW ×Uð1ÞY

(Fig. 2) and considered the impact of additional WIMPs
(Fig. 4) and of an extended Higgs sector (Fig. 5). We also
demonstrated the significance of corrections from pQCD
(Fig. 1) and of potential improvements in lattice studies of
hadronic matrix elements (Fig. 3).
The formalism for weak-scale matching computations

and QCD effects in general direct detection scenarios are
presented in Refs. [4,5]. The basis of heavy-particle loop
integrals arising in heavyWIMP-nucleon scattering can also
be applied to low-energy lepton-nucleon scattering [23].
It is interesting to investigate the impact of nuclear effects
on the cancellation between spin-0 and spin-2 amplitude
contributions [24]. Hadronic uncertainties are dominated by
the strange scalar matrix element [9,10,13,25], and within
the bounds from current lattice data [13,14], a precise
determination of the charm scalar matrix element can also
have significant impact.
While in general model dependent, it is interesting to

extend the EFT analysis here to include power corrections
in specific ultraviolet completions and incorporate con-
straints on heavy WIMPs from other observables such as
indirect detection [26].
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