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Grover’s quantum search algorithm can be formulated as a quantum particle randomly walking on the
(highly symmetric) complete graph, with one vertex marked by a nonzero potential. From an initial equal
superposition, the state evolves in a two-dimensional subspace. Strongly regular graphs have a local
symmetry that ensures that the state evolves in a three-dimensional subspace but most have no global
symmetry. Using degenerate perturbation theory, we show that quantum random walk search on known
families of strongly regular graphs, nevertheless, achieves the full quantum speed-up ofΘð ffiffiffiffi

N
p Þ, disproving

the intuition that fast quantum search requires global symmetry.
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Introduction.—While Grover’s algorithm was originally
proposed as a digital, or discrete-time, algorithm [1], Farhi
and Gutmann formulated it as an equivalent analog, or
continuous-time, algorithm [2]. We use Childs and
Goldstone’s notation and interpretation of this algorithm
[3] as a quantum randomly walking particle on the
complete graph of N vertices, an example of which is
shown in Fig. 1.
The N vertices of the graph label computational basis

states fj0i;…; jN − 1ig of an N-dimensional Hilbert
space. The initial state jψð0Þi is an equal superposition
jsi of all these basis states:

jψð0Þi ¼ jsi ¼ 1ffiffiffiffi
N

p
XN−1

i¼0

jii:

The goal is to find a particular “marked” basis state, which
we label jwi and depict by a red vertex in Fig. 1. We search
by evolving Schrödinger’s equation with Hamiltonian

H ¼ −γL − jwihwj; ð1Þ

where γ is the amplitude per unit time of the randomly
walking quantum particle transitioning from one vertex to
another, L is the graph Laplacian that effects a quantum
random walk on the graph, and jwihwj is a potential well at
the marked vertex, which causes amplitude to accumulate
there. More specifically, L ¼ A–D, where Aij ¼ 1 if
ði; jÞ ∈ E, the set of edges of the graph (and 0, otherwise)
is the adjacency matrix indicating which vertices are
connected to one another, and Dii ¼ degðiÞ (and 0, other-
wise) is the degree matrix indicating how many neighbors
each vertex has. Adding N times the identity matrix, which
is an unobservable rezeroing of energy or overall phase,
yields H ¼ −γNjsihsj − jwihwj.

One might (correctly) reason that the success of the
algorithm depends on the value of γ. When γ takes its
critical value of γc ¼ 1=N, thenH ¼ −jsihsj − jwihwj, and
its eigenstates are proportional to jsi � jwi with corre-
sponding eigenvalues −1∓1=

ffiffiffiffi
N

p
. So the Schrödinger

evolution rotates the state from jsi to jwi in time
π=ΔE ¼ π

ffiffiffiffi
N

p
=2, which is optimal [4].

Degenerate perturbation theory [5] provides an alternate
method for analyzing this Hamiltonian. Since the nonmarked
vertices depicted by the blue crosshatched vertices in Fig. 1
evolve identically by symmetry, we can group them together:

jri ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
X
i≠w

jii:

Then the system evolves in a two-dimensional subspace
spanned by fjwi; jrig. In this basis, the Hamiltonian is

H ¼
�

−ðγ þ 1Þ −γ
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p

−γ
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
−γðN − 1Þ

�
:

Assuming N is large so that N − 1 ≈ N, we separate the
Hamiltonian into leading- and higher-order terms of Oð1Þ,
Oð1= ffiffiffiffi

N
p Þ, and Oð1=NÞ:

FIG. 1 (color online). From left to right: the complete graph
with six vertices, the Paley graph with parameters (9,4,1,2), and
the Latin square graph with parameters (9,6,3,6). Without loss of
generality, a “marked” vertex is colored red, vertices adjacent to it are
crosshatched blue, and vertices not adjacent to it are colored white.
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H ¼
�
−1 0

0 −γN

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Hð0Þ

þ
�

0 −γ
ffiffiffiffi
N

p
−γ

ffiffiffiffi
N

p
0

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hð1Þ

þ
�
−γ 0

0 0

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Hð2Þ

:

In lowest order, the eigenstates of Hð0Þ are jwi and jri with
corresponding eigenvalues −1 and −γN. If the eigenvalues
are nondegenerate, then since the initial superposition state
jsi is approximately jri for largeN, the system will stay near
its initial state, never having large projection on jwi. If the
eigenstates are degenerate (i.e., when γ ¼ γc ¼ 1=N), how-
ever, then the perturbation will cause the eigenstates of the
perturbed system to be a superposition of jri and jwi:

jψ�i ¼ αwjwi þ αrjri;
where the coefficients αw;r and eigenvectorsE� can be found
by solving the eigenvalue problem�

Hww Hwr

Hrw Hrr

��
αw
αr

�
¼ E�

�
αw
αr

�
;

where Hwr ¼ hwjHð0Þ þHð1Þjri, etc. Solving this yields
the eigenstates of the perturbed system: jψ�i ¼
ð1= ffiffiffi

2
p Þðjwi∓jriÞ with corresponding eigenvalues

E� ¼ −1� 1=
ffiffiffiffi
N

p
. Since jri ≈ jsi, the system evolves from

jsi to jwi in time t� ¼ π=ΔE ¼ π
ffiffiffiffi
N

p
=2.

From the novel degenerate perturbation-theoretic per-
spective introduced above, the next step in difficulty would
be search on a graph for which the state evolves in a three-
dimensional subspace, for example, that spanned by the
marked vertex, the superposition of vertices adjacent to
the marked vertex, and the superposition of vertices not
adjacent to the marked vertex. Strongly regular graphs have
exactly the structure to support such evolution: one with
parameters (N, k, λ, μ) has N vertices, each with k
neighbors, where adjacent vertices have λ common neigh-
bors and nonadjacent vertices have μ common neighbors.
This means that relative to a marked vertex colored red in
Fig. 1, there are k adjacent vertices are crosshatched blue,
and N − k − 1 vertices, all at distance 2, colored white.
As one might expect, for some parameters (N, k, λ, μ),

there are no strongly regular graphs. One necessary but
insufficient constraint is that the parameters satisfy [6]

kðk − λ − 1Þ ¼ ðN − k − 1Þμ; ð2Þ
which is proved by counting the pairs of adjacent blue and
white vertices. On the left-hand side of Eq. (2), the marked
red vertex has k neighbors, so there are k blue vertices.
Each blue vertex has k neighbors, one of which is the red
marked vertex and λ of which are other blue vertices. So it
is adjacent to k − λ − 1 white vertices. Thus, the number of
pairs of adjacent blue and white vertices is kðk − λ − 1Þ. On
the right-hand side of Eq. (2), we count the number of pairs
another way, beginning with the white vertices. There areN

total vertices in the graph, one of which is red and k of
which are blue. So there are N − k − 1 white vertices. Each
of these white vertices is adjacent to μ blue vertices. So
there are ðN − k − 1Þμ pairs of blue and white vertices.
Equating these expressions gives Eq. (2).
Equation (2) also implies that k, the degree of the

vertices, must be lower bounded by
ffiffiffiffi
N

p
. That is,

k2 > kðk − λ − 1Þ ¼ ðN − k − 1Þμ, so

k ¼ Ωð ffiffiffiffi
N

p Þ: ð3Þ

While not all strongly regular graphs are known, certain
parameter families are. One family is the Paley graphs,
which are parametrized by

N ¼ 4tþ 1; k ¼ 2t; λ ¼ t − 1; and μ ¼ t;

where N must be a prime power and be congruent to 1 mod
4 [6]. The t ¼ 2 case is shown in Fig. 1. Another family is
the Latin square graphs, which are parametrized by

N¼ t2; k¼ dðt−1Þ; λ¼ d2−3dþ t; and μ¼ dðd−1Þ;

with the additional condition that the graph be geometric,
in the sense of finite geometries [6]. When d ¼ 3, they can
be pictured as a square lattice of t2 vertices, where each
vertex is given a symbol that only appears once in each row
and column [7]. An example of this is shown in Fig. 1.
Vertices are connected if they are in the same row or
column or have the same symbol.
Although it is not apparent from the small, symmetrical

example(s) in Fig. 1, Latin square graphs are proved to be
asymmetric for large N, meaning their automorphism
groups are trivial [7], as are “almost all” strongly regular
graphs in general, although a general proof seems unlikely
[7]. Thus, they are not homogeneous (vertex transitive);
there is no automorphism taking a vertex to any other
vertex as there is for the complete graph, the hypercube,
and cubical lattices, and which, therefore, might seem
necessary for a quantum random walk search to succeed
[1,3]. We show this intuition to be false; a randomly
walking quantum particle on strongly regular graphs
optimally [4] solves the quantum search problem in
Θð ffiffiffiffi

N
p Þ time for large N.
Setup.—We begin by grouping the three types of vertices

together: the red marked vertex, k blue vertices that are
adjacent to the red marked vertex, and N − k − 1 white
vertices that are not adjacent to the red marked vertex.
Call the respective equal superpositions of them jwi, jai,
and jbi; they form a three-dimensional subspace
of CN :

jwi ¼
0
@ 1

0

0

1
A; jai ¼ 1ffiffiffi

k
p

X
ði;wÞ∈E

jxi ¼
0
@ 0

1

0

1
A;

PRL 112, 210502 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
30 MAY 2014

210502-2



jbi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − k − 1

p
X

ði;wÞ∉E
jxi ¼

0
@ 0

0

1

1
A:

The system begins in the equal superposition of all vertices
jsi, which we can write in the fjwi; jai; jbig basis:

jsi ¼ 1ffiffiffiffi
N

p
X
x

jxi ¼ 1ffiffiffiffi
N

p

0
B@ 1ffiffiffi

k
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N − k − 1
p

1
CA:

The system evolves by Schrödinger’s equation with the
search Hamiltonian from Eq. (1). In the case of strongly
regular graphs, each vertex has degree k, so the
degree matrix is a multiple of the identity matrix:
D ¼ kI. This is simply a rescaling of energy, so we can
drop it without observable effects. Then the Hamiltonian is
H ¼ −γA − jwihwj. The jwihwj term is simply a 3 × 3
matrix with a 1 in the top-left corner and 0’s everywhere
else. The adjacency matrix A is

A ¼

0
B@

0
ffiffiffi
k

p
0ffiffiffi

k
p

λ
ffiffiffi
μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k − λ − 1

p

0
ffiffiffi
μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k − λ − 1

p
k − μ

1
CA;

where the last item in the second row, for example, isffiffiffi
k

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − k − 1

p
to convert between the normalizations of

jbi and jci, times the k − λ − 1 white vertices that go into a
blue vertex (see Fig. 1), followed by simplification using
Eq. (2). Thus, the Hamiltonian is

H ¼ −γ

0
B@

1
γ

ffiffiffi
k

p
0ffiffiffi

k
p

λ
ffiffiffi
μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k − λ − 1

p

0
ffiffiffi
μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k − λ − 1

p
k − μ

1
CA: ð4Þ

Solution using perturbation theory.—For the complete
graph, the perturbation Hð1Þ caused the eigenstates to be a
linear combination of jwi and jri. To make this more
clear for strongly regular graphs, we transform from the
fjwi; jai; jbig basis to the fjwi; jri; je3ig basis, where

je3i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

N − 1
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N − k − 1
p

jai −
ffiffiffi
k

p
jbi�:

We do this by conjugating Eq. (4) by

T ¼
�
jwi jri je3i

�
¼

0
BB@

1 0 0

0
ffiffi
k

pffiffiffiffiffiffiffi
N−1

p
ffiffiffiffiffiffiffiffiffiffiffi
N−k−1

p ffiffiffiffiffiffiffi
N−1

p

0
ffiffiffiffiffiffiffiffiffiffiffi
N−k−1

p ffiffiffiffiffiffiffi
N−1

p −
ffiffi
k

pffiffiffiffiffiffiffi
N−1

p

1
CCA:

Multiplying T−1HT, the Hamiltonian in the fjwi; jri; je3ig
basis is

H ¼ −γ

0
BBB@

1
γ

kffiffiffiffiffiffiffi
N−1

p
ffiffi
k

p ffiffiffiffiffiffiffiffiffiffiffi
N−k−1

pffiffiffiffiffiffiffi
N−1

p

kffiffiffiffiffiffiffi
N−1

p kðN−2Þ
N−1

−
ffiffi
k

p ffiffiffiffiffiffiffiffiffiffiffi
N−k−1

p
N−1ffiffi

k
p ffiffiffiffiffiffiffiffiffiffiffi

N−k−1
pffiffiffiffiffiffiffi
N−1

p −
ffiffi
k

p ffiffiffiffiffiffiffiffiffiffiffi
N−k−1

p
N−1

ðλ−μÞðN−1Þþk
N−1

1
CCCA: ð5Þ

Now we break the problem into two cases: when k scales as
N and when k scales less than N—but still no less than

ffiffiffiffi
N

p
from Eq. (3).
Case 1: k ¼ ΘðNÞ. The leading- and first-order terms of

the Hamiltonian in Eq. (5) are, for large N,

Hð0Þ ¼ −γ

0
B@

1
γ 0 0

0 k 0

0 0 λ − μ

1
CA;

Hð1Þ ¼ −γ

0
BB@

0 kffiffiffi
N

p
ffiffiffi
k

p

kffiffiffi
N

p 0 0ffiffiffi
k

p
0 0

1
CCA:

Clearly, the eigenvectors of Hð0Þ are jwi, jri, and je3i with
corresponding eigenvalues −1, −γk, and −γðλ − μÞ. We
want jwi and jri to be degenerate, which occurs when

γc1 ¼
1

k
: ð6Þ

Then the corresponding eigenstates of the perturbed system
are jψ�i ¼ αwjwi þ αrjri. The coefficients αw and αr can
be found by solving the eigenvalue problem�

Hww Hwr

Hrw Hrr

��
αw
αr

�
¼ E�

�
αw
αr

�
;

where Hwr ¼ hwjHð0Þ þHð1Þjri. Evaluating the matrix
components with γ ¼ γc1 ¼ 1=k and large N, we get

�−1 −1ffiffiffi
N

p
−1ffiffiffi
N

p −1

��
αw
αr

�
¼ E�

�
αw
αr

�
:

Solving this, we get eigenstates jψ�i ¼ ðjri∓jwiÞ= ffiffiffi
2

p
with eigenvalues E� ¼ −1� 1=

ffiffiffiffi
N

p
. Since jri ≈ jsi, the

system evolves from jsi to nearly jwi in time t� ¼ π=ΔE ¼
π
ffiffiffiffi
N

p
=2 for large N. This is shown in Fig. 2.

Case 2: k ¼ oðNÞ. The leading- and first-order terms of
the Hamiltonian in Eq. (5) are, for large N,

Hð0Þ ¼ −γ

0
BB@

1
γ 0

ffiffiffi
k

p

0 k 0ffiffiffi
k

p
0 λ − μ

1
CCA;

Hð1Þ ¼ −γkffiffiffiffi
N

p

0
B@ 0 1 0

1 0 0

0 0 0

1
CA:
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It is clear that jri is an eigenvector of Hð0Þ with eigenvalue
−γk. Then the two other eigenvectors have the form
ð c1 0 c3 ÞT. We want one of these to have the same
eigenvalue −γk so that Hð0Þ is degenerate:

Hð0Þ
 c1

0

c3

!
¼ −γk

 c1
0

c3

!
:

Solving this gives the critical γ when k ¼ oðNÞ,

γc2 ¼
1

k
þ 1

ðN − 1Þμ ; ð7Þ

and corresponding eigenvector

jci ¼
�
1þ ðk − λþ μÞ2

k

�−1=2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C

0
@ k−λþμffiffi

k
p
0

1

1
A;

where we have called the normalization constant C. Note,

k − λþ μ ¼ ðN − k − 1Þ μ
k
þ μþ 1 ≈

μN
k

ð8Þ

using Eq. (2), k ¼ oðNÞ, and large N. Then C becomes

C ≈
�
1þ ðμNÞ2

k3

�−1=2
≈
k3=2

μN
; ð9Þ

when k scales less than or equal to ðμNÞ2=3, which is true
for the known parameter families of Latin square graphs,
pseudo-Latin square graphs, negative Latin square graphs,
square lattice graphs, triangular graphs, and point graphs of
partial geometries [6]. C is dominated by 1, otherwise, for
which we are unaware of any examples (when k scales less
than N).
The perturbation causes the eigenstates ofHð0Þ þHð1Þ to

be a linear combination of jri and jci: jψ�i¼ αrjriþαcjci.
To find αr and αc, we solve the eigenvalue problem

�
Hrr Hrc

Hcr Hcc

��
αw
αr

�
¼ E�

�
αw
αr

�
;

where Hrc ¼ hrjHð0Þ þHð1Þjci, etc. These terms are
straightforward to calculate. We get

 
−γk −γC

ffiffiffi
N
k

q
μ

−γC
ffiffiffi
N
k

q
μ − γk

!�
αw
αr

�
¼ E�

�
αw
αr

�
;

where for the off-diagonal terms, we used Eq. (2)
and ðN − 1Þ ≈ N. Solving this, the eigenstates of H0 ¼
Hð0Þ þHð1Þ are jψ�i ¼ ðjri∓jciÞ= ffiffiffi

2
p

with eigenval-
ues E� ¼ −γk� γCμ

ffiffiffiffiffiffiffiffiffi
N=k

p
.

Now let us find the success probability as a function of
time. Solving Schrödinger’s equation, the evolution of the
system is approximately jψðtÞi ≈ e−iH

0tjsi. The state of the
system approximately evolves in the subspace spanned by
jψ�i for large N, so this becomes

jψðtÞi ≈ e−iEþtjψþihψþjsi þ e−iE−tjψ−ihψ−jsi:
Note that hψ�jsi ¼ ðhrjsi∓hcjsiÞ= ffiffiffi

2
p

≈ ð1∓0Þ= ffiffiffi
2

p ¼
1=

ffiffiffi
2

p
for large N. Multiplying by hwj on the left, noting

hwjψ�i ¼ ∓hwjci= ffiffiffi
2

p
≈∓ 1

2
CμN=k3=2 from Eq. (8),

and plugging in the energy eigenvalues, the success
amplitude is

hwjψðtÞi ≈ e−iγkt
1

2
C

μN

k3=2
ð−e−iγC

ffiffiffiffiffiffi
N=k

p
μt þ eiγC

ffiffiffiffiffiffi
N=k

p
μtÞ:

The exponentials sum to 2i sinð·Þ, so the success proba-
bility is

jhwjψðtÞij2 ≈
�
C

μN

k3=2

�
2

sin2
�
C
μ
ffiffiffiffi
N

p

k3=2
t

�
;

where we have used γ ≈ 1=k. For the known parameter
families where k ¼ O½ðμNÞ2=3�, which includes Latin
square graphs that are proved asymmetric [7], we use
Eq. (9) to get jhwjψðtÞij2 ≈ sin2ðt= ffiffiffiffi

N
p Þ, so the search is

achieved with probability 1 in time t� ¼ π
ffiffiffiffi
N

p
=2 for large

N, as shown in Fig. 2.
Thus, we have shown that quantum search on known

strongly regular graphs behaves like search on the complete
graph for large N, reaching a success probability of 1 at
time Θð ffiffiffiffi

N
p Þ. This requires choosing γ ¼ γc1 ¼ 1=k when

k ¼ ΘðNÞ and γc2 ¼ 1=kþ 1=½ðN − 1Þμ� when k ¼ oðNÞ.
Since this includes strongly regular graphs that are asym-
metric, it disproves the intuition that fast quantum search
requires global symmetry.
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FIG. 2 (color online). Search on the Paley graph with param-
eters (101,50,24,25) with γc1 in Eq. (6) (left), and Latin square
graph with parameters (2500,147,50,6) with γc2 in Eq. (7) (right).
The black solid curve is jhwjψij2, the red dashed curve is
jhajψij2, and the green dotted curve is jhbjψij2.
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