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The degree of non-Markovianity of quantum processes has been characterized in several different ways
in the recent literature. However, the relationship between the non-Markovian behavior and the flow of
information between the system and the environment through an entropic measure has not been yet
established. We propose an entanglement-based measure of non-Markovianity by employing the concept of
assisted knowledge, where the environment E, acquires information about a system S, by means of its
measurement apparatus A. The assisted knowledge, based on the accessible information in terms of von
Neumann entropy, monotonically increases in time for all Markovian quantum processes. We demonstrate
that the signatures of non-Markovianity can be captured by the nonmonotonic behavior of the assisted
knowledge. We explore this scenario for a two-level system undergoing a relaxation process, through an
experimental implementation using an optical approach that allows full access to the state of the
environment.
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The inevitable interaction between a system and its
environment typically results in the loss of quantum
features, such as coherence [1,2]. One important aspect
in the study of these so-called open quantum systems is the
concept of non-Markovianity, which arises due to memory
effects of the environment. Non-Markovian features might
enable the system to recover part of the lost coherence and
information back from the environment [1–4]. Although
these memory effects have been investigated in the past,
only recently an increase in the understanding of non-
Markovianity from a quantum information perspective has
emerged [5–11].
The non-Markovian nature of a dynamical quantum map

can be characterized through a number of distinct methods
[5–10]. To date, the measure defined by Breuer, Laine, and
Piilo [6] based on trace distance, is the most significant
quantifier of the degree of non-Markovianity, due to its
interpretation: non-Markovianity manifests itself as a
reverse flow of information from the environment back to
the system. An alternative method to measure the degree of
non-Markovianity relies on the fact that local, completely
positive trace-preserving (CPTP) maps cannot increase the
entanglement between an open quantum system and an
isolated ancillary system [12]. Exploiting this property,
Rivas, Huelga, and Plenio (RHP) have defined another
measure for the degree of non-Markovianity [7]. According
to the RHP measure, a dynamical process is said to be non-
Markovian if the entanglement between the open system and
the isolated ancilla temporarily increases throughout the

dynamics. Although the RHP measure provides a connec-
tion between the non-Markovian behavior of dynamical
maps and entanglement, a meaning in terms of information
flow is still lacking in this approach.
Here, we propose an entanglement-based measure of

non-Markovianity having a direct information based inter-
pretation. Our method is based on the decoherence program
[13], where a system S is coupled to a measurement
apparatusA, which in turn interacts with an environment E.
During this process, E acquires information about S since
an amount of classical correlation is created between them.
We reveal a link between the proposed measure and the
flow of information between the system S and the envi-
ronment E in terms of the maximum amount of classical
information that the environment can obtain about the
system, here called the accessible information (AI),
J←SE [14]. In particular, we show that the rate of change
of the entanglement of formation (EOF) ESA shared
by the isolated system S and the apparatus A is directly
related to the rate of change of the AI that the environment
E acquires about the system S. As a direct consequence of
this connection, J←SE turns out to be a monotonically
increasing quantity for all Markovian quantum processes.
We illustrate this scenario considering a two-level
system undergoing an amplitude damping process [1]. We
demonstrate the connection between J←SE and ESA present-
ing an experimental realization using an optical setup
that allows full access to the environmental degrees of
freedom [15].
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Let us consider a system S sharing an amount of
information with the apparatus A. The bipartite system
SA is initially in a pure state and the apparatus interacts
with the environment E, so that an amount of correlation is
created between the individual parts of the composite
system SAE. The idea of assisted knowledge comes into
play when the tripartite system SAE evolves in time, and
the environment E acquires information about the system S
by means of the interaction with the apparatus A. The
maximum amount of classical information that can be
extracted about the system S through the observation of the
environment E is given by

J←SE ¼ max
fΠE

i g

�
SðρSÞ −

X
i

piSðρSjiÞ
�
; (1)

where SðρÞ ¼ −Trðρlog2ρÞ is the von Neumann entropy,
ρS is the reduced density operator of system S, and fΠE

i g
represents the general quantum measurements (including
the nonorthogonal ones) acting on the environment E [14].
Here, ρSji ¼ TrEðΠE

i ρSEΠE
i Þ=pi denotes the remaining state

of the subsystem S after obtaining the outcome i with
probability pi ¼ TrSEðΠE

i ρSEΠE
i Þ in the subsystem E.

Considering that there is a fundamental connection
between the non-Markovian memory effects and the
reverse flow of information from the environment E back
to the system S, a natural conjecture is that any deviation
from the monotonically increasing behavior of J←SE is an
indication of non-Markovianity. In this work, we demon-
strate that this conjecture is indeed true.
We suppose a dynamical quantum process described by a

time-local master equation of the form

∂
∂t ρðtÞ ¼ LðtÞρðtÞ; (2)

where the Lindbladian superoperator LðtÞ [16] is given by

LðtÞρ ¼ −i½HðtÞ; ρ�

þ
X
i

γiðtÞ
�
AiðtÞρAiðtÞ† −

1

2
fAiðtÞ†AiðtÞ; ρg

�
;

where HðtÞ is a time-dependent Hamiltonian, γiðtÞ are the
decay rates, andAiðtÞ are the Lindblad operators. Themaster
equation given above leads to a conventional Markovian
process, provided that γiðtÞ ≥ 0. In this case, the dynamical
maps can be written in terms of a time-ordered exponential
as Λt;0 ¼ T exp½R t

0 Lðt0Þdt0�, which transforms the state at
time 0 into the state at time t. An important property of this
map is that it satisfies the divisibility condition, that is, a
CPTP map Λt2;0 can be expressed as a composition of
two other CPTP maps as Λt2;0 ¼ Λt2;t1Λt1;0 with
Λt2;t1 ¼ T exp½R t2

t1 Lðt0Þdt0�, for all t1, t2 ≥ 0. We should
also emphasize that the time dependent decay rates γiðtÞ

may take negative values temporarily throughout the
dynamics of the system. This is closely related to the
violation of the divisibility property of a quantum process,
described by a master equation of the form of Eq. (2), since
the dynamical map Λt2;t1 is no longer CPTP when we have
γiðtÞ < 0 [17].
The amount of deviation from the divisibility of a given

dynamical map is the essence of entanglement-based
measures of non-Markovianity. Since the entanglement
shared by a system and an isolated ancilla cannot increase
under local CPTP operations, it follows from the compo-
sition law that any entanglement measure has to mono-
tonically decrease for all divisible processes [7]. Here, we
define our measure in a slightly different way as compared
to the recipe given by RHP. We sum the overall increase of
ESA throughout the whole time evolution, and, in addition,
we include an optimization procedure. Under these con-
siderations, our entanglement-based measure takes the
form

N ðΛÞ≡ max
ρSAð0Þ

Z
ðd=dtÞESA>0

d
dt

ESAðtÞdt; (3)

where the maximization is taken over all possible pure
initial states of the bipartite system SA. Moreover, we
specifically choose the EOF to quantify the amount of
bipartite entanglement [18]. Indeed, this choice is what
enables us to relate the entanglement between the system S
and the apparatus A to the maximum amount of classical
information that the environment E can access about the
system S, in a simple way. We assume that the initial state
of the environment E is pure. In this case the tripartite state
SAE is pure and therefore, the Koashi-Winter relation
implies [19]

ESA ¼ SðρSÞ − J←SE : (4)

It is important to recall that the isolated system S does not
directly interact with the environment E, and as a result, its
reduced density matrix ρS is time invariant when the
subsystem A is traced over. Consequently, taking the time
derivative of the above equation, we obtain

d
dt

ESA ¼ −
d
dt

J←SE : (5)

This relation clearly tells us that any temporary increase in
ESA, during the dynamics of the open system, implies a
temporary decrease in J←SE . Thus, deviation from the
property of divisibility can be signaled by a temporary
decrease of J←SE , which is a direct entropic measure of
information. Note that it might be possible for certain
nondivisible processes that ESA decays monotonically.
However, in such cases, our proposal in terms of informa-
tion flow can be adopted as a criterion for non-
Markovianity on its own.
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To illustrate the importance of the above relation, we
consider the system S initially correlated to the apparatus
A, which is given by a two-level system. Also, the
apparatus is in contact with a zero temperature reservoir,
modeled as a collection of harmonic oscillators. Effectively,
the reservoir induces an amplitude damping process only
on the apparatus A, which can be accounted for by the
following Hamiltonian,

HAE ¼ ω0σþσ− þ
X
k

ωka
†
kak þ ðσþBþ σ−B†Þ; (6)

where B ¼ P
kgkak, and σ� represent the raising and

lowering operators of the qubit, which has the transition
frequency ω0. The annihilation and creation operators of
the environment modes, having the frequencies ωk, are
denoted by ak and a

†
k, respectively. We consider a reservoir

with an effective spectral density of the form JðωÞ ¼
γ0λ

2=2π½ðω0 − ωÞ2 þ λ2�, where λ denotes the spectral
width of the coupling, and is connected to the correlation
time of the reservoir τB by the relation τB ≈ 1=λ. The
parameter γ0 is related to the time scale τR, over which the
state of the system changes, by τR ≈ 1=γ0. For such a
spectral density, the weak coupling regime, where the
dynamics is Markovian, corresponds to τR > 2τB. The
Hamiltonian (6), with the considered spectral density, gives
rise to a master equation having the form of Eq. (2),

∂
∂t ρðtÞ ¼ γðtÞ

�
σ−ρðtÞσþ −

1

2
fσþσ−; ρðtÞg

�
; (7)

where the time-dependent decay rate is given by

γðtÞ ¼ 2γ0λ sinh ðdt=2Þ
d cosh ðdt=2Þ þ λ sinh ðdt=2Þ ; (8)

with d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 2γ0λ

p
. The dynamics of the apparatus can

be described in the operator-sum representation as ρðtÞ ¼
Λðρð0ÞÞ ¼ P

2
i¼1MiðtÞρð0ÞM†

i ðtÞ, where the correspond-
ing Kraus operators MiðtÞ are

M1ðtÞ ¼
�
1 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− pðtÞp

�
; M2ðtÞ ¼

�
0

ffiffiffiffiffiffiffiffiffi
pðtÞp

0 0

�
;

(9)

satisfying the condition
P

2
i¼1M

†
i ðtÞMiðtÞ ¼ I for all

values of t, and the parameter pðtÞ reads

pðtÞ ¼ 1 − e−λt
�
cosh

�
dt
2

�
þ λ

d
sinh

�
dt
2

��
2

: (10)

In the Supplemental Material [20], we explain the details
of the optimization needed for the evaluation of the non-
Markovianity measure N ðΛÞ for the above model. From

this point on, we consider the initial state as the optimal
state of bipartite system SA, which is the maximally
entangled one.
We use an optical setup to demonstrate the application of

the entanglement-based measure of non-Makovianity [15].
The experimental scheme is sketched in Fig. 1. A source of
polarization entangled photons is used to prepare states
with purity as high as 90%. The photon in mode A goes
directly to detection after polarization analysis. The other
photon in mode B is sent to two nested interferometers. The
first interferometer, mounted with calcite beam displacers
BD1 and BD2, is responsible for the implementation of the
quantum channel over the polarization degree of freedom.
This is done by interpreting the output path 1 and 2 of this
interferometer as the environmental degree of freedom [15].
The second interferometer, formed by the set BD1, BD2,
and BD3, coherently combines paths 1 and 2 at BD3, which
is necessary to obtain complete information about the
environment.
We can summarize the experiment in three steps. In the

first step the two-photon polarization-entangled state is
prepared in a standard way by pumping two thin nonlinear
crystals of barium-beta-borate (BBO ) with a cw pump
laser, at 325 nm wavelength. Photon pairs are selected with
a 650 nm wavelength. The second step is the implementa-
tion of the channel for one of the photons. This is made
with the first interferometer where the polarization modes
horizontal (H) and vertical (V) are split at the input by BD1.
In this way, we can insert half wave plates (H1) and (H2)
and control the polarization state in each mode independ-
ently. The polarization modes can be recombined in a
second beam displacer (BD2), giving rise to mode 1 in the
same polarization state as the input, if the polarization
mode H is completely changed into V by H1 and if the
polarization mode V is converted into H by H2. This is the
time reversal of the splitting in BD1.
When it comes to the second stage of the experiment, in

order to implement the amplitude damping channel, we can
set H1 so that part of the horizontal component is not
converted into vertical. This causes the remaining horizon-
tal component to leak out to mode 2 of the second part of
the interferometer. Modes 1 and 2 are the two possible
states of the environment. Mode 1 carries the recombined

FIG. 1 (color online). Experimental setup and the stages of the
experiment.
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polarization state, which can be the same as the input, or
can have a reduced population due to the amplitude
damping. If the population is reduced, mode 2 of the
environment may be populated.
In the third step, we implement the tomographic meas-

urement in the polarization of both photons and in the path
degree of freedom of photon B. In this stage, modes 1 and 2
are directed to the third beam displacer (BD3), which on the
one hand acts as a polarization analyzer. On the other hand,
BD3 coherently combines these modes, mapping the path
states inside the interferometer onto polarization states
outside the interferometer. Thus, depending on the settings
ofH3 andH4, and quarter-wave platesQ3 andQ4, one can
have all combinations of projections of the photon state
onto some given polarization-path state. Together with the
measurements on the other photon, this allows tomography
of the 3-qubit state.
Here, the density matrices are reconstructed using the

maximum likelihood estimation. We prepare a three-qubit
state describing the composite system involving the par-
titions S implemented by the polarization of the photon in
the upper part of Fig. 1,A implemented by the polarization
of the photon going through the channel, and the environ-
ment E implemented by the paths in the second interfer-
ometer. Our setup produces a unitary interaction on the
bipartite system AE, leaving the system S untouched. This
unitary interaction is developed in such a way that, when E
is traced out, the dynamics of A is equivalent to that
described by the Kraus operators of Eq. (9), where pðtÞ is
given in Eq. (10). We should also note that our environment
has no inherent memory and in this sense the experiment
emulates the non-Markovian features.
We first produce the following tripartite initial state

jΨð0ÞiSAE ¼
ffiffi
1
2

q
½j10i þ j01i�SAj0iE . As a result of the

interaction between A and E, the state of the bipartite
system SA evolves to ρSAðtÞ ¼ ð1=2ÞjϕSAðtÞihϕSAðtÞj þ
ð1=2ÞpðtÞj00ih00j with jϕSAðtÞi ¼ j10i þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − pðtÞp j01i,

and the state of the bipartite system SE evolves to
ρSEðtÞ ¼ ð1=2ÞjψSEðtÞihψSEðtÞj þ ð1=2Þ½1 − pðtÞ�j00ih00j
with jψSEðtÞi ¼ j10i þ pðtÞj01i.
We implement two kinds of unitary evolution, which are

related to two distinct values of λ=γ0. The unitary operation
is applied adjusting pðtÞ in a controlled way, which is not
actually a function of time in this experiment, but is
controlled by θp, the angle of half wave plate H2. In
Fig. 2(a), we set the unitary evolution (and, consequently,
the way θp varies) to implement a dynamics equivalent to
the case of λ=γ0 ¼ 3. We observe that, as ESA decays
monotonically, J←SE increases in the same fashion. In this
situation, γðtÞ is positive throughout the whole time
evolution, as we can see in the inset of Fig. 2(a). Recall
that as long as γðtÞ remains positive, the dynamical map is
guaranteed to be divisible, implying a Markovian process.
On the other hand, Fig. 2(b) shows the results when we
adjust the unitary interaction to implement an evolution
equivalent to the case of λ=γ0 ¼ 0.1. In this case, ESA can
increase (decrease) temporarily while J←SE decreases
(increases). It is important to note that, when J←SE decays,
γðtÞ takes negative values, as shown in the inset of Fig. 2(b).
Hence, the dynamical map in this time interval is
nondivisible and the considered quantum process
non-Markovian.
Therefore, the experimental results confirm our theo-

retical predictions that the interaction of the environment E
with the apparatus A can increase the entanglement
between the system S and the apparatus A, paying the
cost of a decay in the maximum amount of classical
information that the environment E can access about the
system S, and that this feature can be used to signal non-
Markovianity. Note that we have supposed a pure initial
state for E. However, we can reach a similar conclusion
even if we remove this assumption. In this case, without
any loss of generality, we can purify the environment E by
extending the Hilbert space to include an extra subsystem
E0. The total state SAEE0 is now composed of four
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FIG. 2 (color online). Theoretical plot of the accessible information JSEðtÞ (solid blue line), the entanglement of formation ESAðtÞ
(dashed red line), and in the insets, the decay rate γðtÞ=γ0 (solid orange line) as a function of scaled time γ0t, which is experimentally
controlled by pðtÞ → θp. Experimental points for JSEðtÞ and ESAðtÞ are denoted by black dots and purple triangles, respectively. While
(a) demonstrates the monotonicity of correlations in the Markovian regime with λ=γ0 ¼ 3, (b) displays their nonmonotonic behavior in
the non-Markovian regime with λ=γ0 ¼ 0.1.
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partitions, and we have ESA ¼ SS − J←SfEE0g, which indi-
cates that the EOF shared by the system S and the apparatus
A is still connected to the AI that the bipartite system of the
environment E and its purification E0 can acquire about the
system S.
In conclusion, we have established a direct connection

between the rate of change of the entanglement shared by a
system S and its measurement apparatus A, and the rate of
change of the maximum amount of classical information
that the environment E can acquire about the system S by
interacting with the apparatus. This connection reveals
how the proposed entanglement-based measure of non-
Markovianity is related to the flow of information between
the system S and the environment E in terms of an entropic
measure of information. Furthermore, we have presented an
experimental realization of this scenario. The proposed
measure of non-Markovianity links two apparently unre-
lated approaches [6,7]; it takes into account the reverse flow
of information from the environment back to the system as
the measure in Ref. [6], and it also provides a connection
with the concept of entanglement as the measure introduced
in Ref. [7]. Therefore, our proposal presents a plausible
way in order to meaningfully quantify non-Markovianity.
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