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Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive
Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division
is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable
model for cell size control, and calculate the cell size and interdivision time distributions, as well as the
correlations between these variables. We suggest ways of extracting the model parameters from
experimental data, and show that existing data for E. coli supports partial size control, and a particular
explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the
next initiation event. This hypothesis accounts for the experimentally observed correlations between
mother and daughter cells as well as the exponential dependence of size on growth rate.
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Microorganisms such as bacteria come in a diverse set of
shapes and sizes. Nonetheless, individual strains have
remarkably reproducible shapes, and a narrow distribution
of sizes [1–4]. Many bacteria, such as E. coli, are rod
shaped, and during their exponential growth phase they
elongate while maintaining a constant diameter. After
approximately doubling their length (as well as mass
and volume), and completing DNA replication for their
offspring, they divide symmetrically into two approxi-
mately identical daughter cells. In spite of decades of
research, we still do not have a good understanding of how
cells regulate their shape, both mechanically (i.e., what is
the biophysical feedback necessary to achieve a rod-shaped
cell? [5]) and dimensionally: the coefficient of variation
(standard deviation:mean, CV) can be as low as 0.1 for
bacteria [2]. Bacteria are also remarkable in their ability to
have a generation time that is shorter than the time it takes
them to replicate DNA: doubling time τd for E. coli in rich
media at 37 °C is about 20 mins, while Tr ≈ 60mins are
needed from initiation of DNA replication to cell division.
This apparent paradox is explained by the existence of
multiple replication forks: in these situations, a cell will
already start replicating DNA for its four granddaughters
(or eight great granddaughters) in order for the replication
to complete in time.
Many models for cell size regulation exist in the

literature [1,2,6–14]. Different strategies will yield particu-
lar cell size and interdivision time distributions, as well as
distinct correlations. Hence, it is important to understand
the connection between different regulation models and the
resulting distributions and correlations. Moreover, there are
two seemingly contradictory results in the literature: the
first is the model by Donachie [15], which shows that the
measured exponential dependence of bacterial size on
growth rate [16] is consistent with initiation of DNA
replication at a constant, growth-rate-independent volume

per replication fork—suggesting a mechanistic picture in
which a cell “knows” of its size and initiates replication
when reaching a critical one. This model would imply that
size at birth and division would not be correlated: since the
time from initiation to division is constant [17], the size at
division will be independent of the size at birth. However,
experiments show that there are strong correlations
between the two [18].
We will show here how these two results can be

reconciled within a minimal model, which will be analyti-
cally tractable. We will suggest a mathematical framework
which is able to capture and extend several existing models,
and will use it to analyze the correlations and cell size
distributions. We shall show that the aforementioned
experimental data for E. coli support a mechanism of cell
size regulation in which the cell attempts to add a constant
volume from the event of initiation of DNA replication to
the next initiation event [19]. This model will be consistent
with the results discussed in Ref. [15], will predict an
exponential dependence of cell size on growth rate, and will
also quantitatively account for the positive correlations
between size at birth and division [18] and negative
correlations between size at birth and interdivision time
[14]. We will show that for size-additive noise the size
distribution is Gaussian, while for time-additive (i.e., size-
multiplicative) noise the resulting size distribution is
log-normal—and hence right skewed. As discussed in
the Supplemental Material [20], experimentally measured
distributions are indeed skewed, and for this reason we
focus on the analysis of time-additive noise in the main text
and defer the size-additive case to the Supplemental
Material [20]. Within the model, the standard deviations
of both size and interdivision time distributions are
controlled by a single parameter.
The toolswhichwe shall usewill parallel those usedwhen

solving problems in statistical mechanics, in particular those
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involving Langevin equations [21].Multiplicative noise and
the log-normal distributions which emerge from our model
also occur in other problems in physics, such as relaxations
in glasses [22] and the modeling of financial markets
[23,24]. However, in contrast to most physical systems,
negative feedback (i.e., control) is a necessary feature of
biological systems, including the problem studied here.
Exponential growth of a single cell and regulation

models.—The question of the mode of growth of a single
bacterium has been a long standing problem, with linear
and exponential growth the most common models consid-
ered [1,2,25]. Recent experiments show that individual cell
volume grows exponentially for various bacterial strains
[3,26–28]. In fact, if cells grow at a rate that is proportional
to the amount of protein they contain [29,30], as long
as the protein concentration is constant, the cells will
grow exponentially in mass and volume. We shall assume
exponential growth of volume throughout this paper,
vðtÞ ∝ 2t=τd , and neglect fluctuations in the growth rate.
Furthermore, we will assume that cells divide precisely in
half since experimental results [31,4] show that division
occurs at the midcell to an excellent approximation.
Cells need a feedback mechanism that will control their

size distribution. If cells grew for a constant time t ¼ τd,
random fluctuations in the timing would make the size of
the cells at division vd perform a random walk on the
volume axis, and thus this mechanism does not control size.
Another regulatory strategy is that of division at a critical
size, or of initiation of DNA replication at a critical size.
These ideas are prevalent in the literature [1,2], but we will
show that existing experimental data for E. coli argues
against them. We shall consider the following class of
models: upon being born at a size vb, the cell would attempt
to grow for a time τðvbÞ such that its final volume at
division is vd ¼ fðvbÞ. If the function fðvbÞ ¼ const, we
are back to the critical size model. The constant time model
can also be cast in this language: since the growth is
exponential, attempting to grow for a prescribed, constant
time τd is the same as having fðvbÞ ¼ 2vb. Another
important model that has been suggested is the so-called
“incremental model,” in which the cell attempts to add a
constant volume v0 to its newborn size [32]. In this case

fðvbÞ ¼ vb þ Δ: (1)

In the following, we suggest a method through which an
arbitrary regulatory model described by a function fðvbÞ
can be approximately solved; i.e., we can find all the
involved distributions and correlation coefficients analyti-
cally, finding excellent agreement with the numerically
exact solutions. We also provide methods to extract the
model parameters from the experimental data.
The model.—We assume that the cell attempts to divide

at a volume vd ¼ fðvbÞ, as previously explained, by
attempting to grow for the appropriate amount of time ta

which is a function of vd. We assume that to this time is
added a random noise tn, which we assume to be Gaussian.
The magnitude of this noise will dictate the width of the
resulting size and interdivision time distributions. Thus we
have

tgrowth ¼ ta þ tn ¼ τdlog2½fðvbÞ=vb� þ tn; (2)

with tn assumed to be a random variable with
PðtnÞ ¼ ð1=

ffiffiffiffiffiffiffiffiffiffi

2πσ2T
p

Þe−ðt2n=2σ2TÞ. The model is similar to that
discussed in Ref. [33], where the molecular mechanisms
leading to the noise in budding yeast are studied.
We will calculate the interdivision time and volume

distributions. The key insight is that for noise that is not
too large (equivalent to size distributions which are not
too broad, i.e., with a small CV), it is the behavior
of fðvbÞ around the average newborn size v̄ that is the
most important. Therefore, we can Taylor expand fðvbÞ
around v̄:

fðvbÞ ≈ fðv̄Þ þ f0ðv̄Þðvb − v̄Þ: (3)

As an example, the incremental model has f0ðv̄Þ ¼ 1 and
v̄ ¼ Δ, while the critical size model has f0ðv̄Þ ¼ 0.
Any two models that agree to lowest order will result in

similar distributions—provided the noise is not too large.
We therefore choose to solve an equivalent model that will
be amenable to analytic treatment, and that can be viewed
as an interpolation between the critical size model and the
constant doubling time model. We choose

ta ¼ τd½1þ αlog2ðv0=vbÞ�; (4)

which corresponds to the regulatory function:
fðvbÞ ¼ v02ta ¼ 2v1−αb vα0. The case α ¼ 0 corresponds to
a constant doubling time model [f0ðv0Þ ¼ 2], while α ¼ 1
corresponds to the critical size model [f0ðv0Þ ¼ 0].
Importantly, for α ¼ 1=2 we have f0ðv0Þ ¼ 1, as does
the incremental model; hence, using a target function like
this gives results close to a perfect realization of the
incremental mode. We shall show that the parameter v0
in Eq. (4) will be very close to the average newborn cell
size v̄.
Solution of size and interdivision time distributions.—

We shall consider the case of symmetric division, relevant
for many bacteria. For a newborn size vb, we have for the
next newborn volume vnewb ¼ vα0v

1−α
b 2tn=τd .

Therefore,

log2ðvnewb =v0Þ ¼ ð1 − αÞlog2ðvb=v0Þ þ tn=τd: (5)

From stationarity of the stochastic process we know
that Pðvnewb Þ ¼ PðvbÞ. Since tn is a Gaussian variable,
we find that log2ðvbÞ is also a Gaussian variable, and
hence PðvbÞ would be a log-normal distribution. If we
denote the variance of log2ðvb=v0Þ by σ2v, we have
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σ2v ¼ σ2vð1 − αÞ2 þ ðσT2=τd2Þ; therefore, the newborn size
distribution is

PðvbÞ ¼
1

ffiffiffiffiffiffi

2π
p

lnð2Þσv
e−ð½log2ðvb=v0Þ�2=2σ2vÞ

vb
; (6)

with

σ2v ¼
σT

2

τ2dαð2 − αÞ : (7)

Note that the average cell size is v̄ ¼ v0eln
2ð2Þσ2v=2; for

realistic values of σv it will only be a few percent larger than
v0. Similarly, the standard deviation of the size distribution
will be approximately σs ≈ lnð2Þσvv0, and the coefficient of
variation is, thus, vCV ≈ lnð2Þσv. The skewness of the
distribution is positive, γ1 ≈ 3 lnð2Þσv, and provides a
useful test of the assumption of a time-additive rather than
size-additive noise, as we elaborate on in the Supplemental
Material [20].
We can now find the distribution of division times using

td ¼ ta þ tn. Since vb depends only on the noise of
previous generations, ta is independent of tn, and since
log2ðvb=v0Þ and tn are Gaussian variables, the resulting
interdivision time distribution is also Gaussian, and has a
variance given by

Var½td� ¼ τ2dα
2σ2v þ σT

2 ¼ σT
2

2

2 − α
: (8)

In the case α → 0, we find that σv diverges (an extremely
broad distribution of newborn sizes), but the interdivision
time distribution is narrow: Var½td� → σT

2, as should
clearly be the case since there is no size feedback
mechanism in this case. Note that a stationary distribution
exists for 0 < α < 2, and that the size distribution is
narrowest for α ¼ 1.
From Eq. (8) we find that the CV of the distribution of

interdivision times is given by tCV ¼ ðσT=τdÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=2 − αÞp

.
It is instructive to consider the dimensionless quantity:

γ ≡ vCV=tCV ≈
lnð2Þ
ffiffiffiffiffiffi

2α
p : (9)

By constructing γ from the experimental distributions we
can extract the value of α and find the form of the size
regulation utilized by the organism, if the division is
symmetric. Later we shall show an additional, independent
way of extracting α, which will rely on correlation
coefficients.
Figure 1 compares the numerically obtained size dis-

tribution for various values of α and the incremental model,
with the result of Eq. (6), finding excellent agreement. In
the Supplemental Material [20] we extend this comparison
to various noise magnitudes. Our model captures the

numerically exact solution very well and Eq. (4) provides
a useful tool to capture a generic division strategy char-
acterized by an arbitrary function fðvbÞ.
Extracting the parameters from experiments.—Within

the class of models proposed here, the value of α can be
obtained by considering the correlations between size at
birth and size at division. In the Supplemental Material [20]
we show that the Pearson correlation coefficient between
size at birth and division (equal to the correlation coef-
ficient between mother and daughter size at birth) equals

C ≈ 1 − α: (10)

In particular, for the incremental model the correlation
coefficient between mother and daughter cells should be 0.5.
Upon fixing the value of α, a single parameter σT will

determine the distributions of both size and division time,
and the calculations performed here would allow one to
scale both distributions using this single parameter. For the
time-additive noise analyzed here, the model predicts an
approximately log-normal newborn size distribution, given
by Eq. (6), and a Gaussian interdivision time distribution,
given by Eq. (8), whose standard deviation is larger than
σT . In the Supplemental Material [20] we show that for
size-additive noise, one obtains a skewed time distribution
but a Gaussian size distribution—in contrast to what is
observed experimentally for E. coli [13]. Therefore, observ-
ing the distribution shape provides useful information
regarding the source of the noise. Further experiments
are needed to elucidate the molecular source of this
multiplicative noise.
Cell size control in E. coli.—Experimentally, various

correlation coefficients were measured for E. coli at slow
growth conditions in Ref. [18], using the membrane elution
technique. The correlation coefficient between mother and
daughter size at birth was found to beC ¼ 0.55, close to the
theoretical 1=2 value expected for the incremental model.

0 1 2 3 4 5
0

0.5

1

1.5

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

FIG. 1 (color online). Comparison between the analytical
results of the model for varying values of α [Eqs. (6)–(8)] and
numerics. Choosing α ¼ 1=2 provides an excellent approxima-
tion for the incremental model, as the effective size regulation of
the two models agrees to lowest order. The parameters of the
model are chosen according to their realistic values for E. coli
growing at 37°: doubling time is τd ¼ 20 mins and σT=τd ¼ 0.2
[2]. For each case, the numerical distribution is extracted from a
sequence of 107 divisions.
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There was a strong correlation (0.8) between size at
initiation of DNA replication and size at division, as we
would expect from the assumption of exponential growth
and that the time from initiation to division is constant [17].
Yet these observations appear to be in direct contradiction
to the idea that initiation occurs at a critical size [15]. The
key point is that Donachie’s analysis [15] shows that there
is a critical size for initiation of DNA replication (inde-
pendent of growth rate), on average. It is only from the
fluctuations (i.e., correlations) that one can understand
whether the underlying regulatory mechanism utilizes a
critical size or integrates volume—as we shall propose is
the case. Reference [19] gives a simple biophysical
implementation of the incremental model, which will
reconcile these seemingly contradictory results and will
realize a particular case of the class of model we proposed
here: in this model, a protein A is forced to have a growth-
rate-independent concentration throughout the cell using a
negative feedback in its regulation, and a second protein B
is produced whenever A is. In this way, when cell volume
grows (and only then), more A and B proteins are generated
in an amount proportional to the change in volume. The
hypothesis is that B proteins localize at their potential
initiation site (i.e., one of the origins of replication), and
only when their total number at each origin reaches a
critical value does initiation of DNA replication occur, after
which B is degraded. Note that two types of proteins are
necessary, since in order to measure volume differences A
must be spread throughout the cell, while B has to localize
to measure an absolute number (rather than concentration).
See Ref. [19] for further details.
In the Supplemental Material [20] we show that this

model reduces to the incremental model, albeit with an
effective Δ [see Eq. (1)] which strongly depends on the
doubling time τd and the time from initiation to division Tr:

Δ̂≡ Δ2Tr=τd : (11)

According to our results the average cell size will be Δ̂—
in agreement with the experimental results seeing precisely
this exponential dependence of bacterial size on growth
rate, with Tr the exponent [16]. This model naturally
accounts for the “quantization” of the cell critical size at
initiation at different growth rates [15], without necessitat-
ing the measurement of an absolute mass or volume.
Moreover, it is plausible that the source of noise in adding
the incremental volume will be due to “molecular noise”
(number fluctuations of protein B), and would therefore be
weakly dependent on growth rate. The same calculation
which leads to Eq. (11) would suggest that σT (the noise
standard deviation) should depend on the growth rate in the
same exponential way as Δ̂. This implies that the CVof size
distributions should be weakly dependent on growth rate
[see Eq. (7)], an expectation supported by Ref. [34].

Thus, we have shown that using our calculations and the
interpretation in terms of the incremental model we can
elucidate various experimental results. In fact, the model also
makes precise predictions with regards to additional corre-
lations: for example, it is possible to show that for the
incremental model the size correlation coefficient between
cells N generations apart is 2−N . Similarly, the model
predicts a negative correlation of −1=2 between the size
at birth and the interdivision time; see the Supplemental
Material [20] for further details. This correlation coefficient
was recently analyzed by Robert et al. [14] using data from
two different experimental systems, finding a correlation
coefficient of −0.5 in both cases, exactly as predicted by our
model. This gives a particularly simple and transparent
interpretation to their analysis, and provide additional, strong
support for the incremental model. References [13,35] find
similar negative correlations between newborn size and
interdivision size, supporting our conclusion.
All of these provide additional support for the relevance

of this model to cell size control in E. coli, and most likely
to other organisms as well. It is possible, however, that
alternative biophysical mechanisms may lead to the same
correlations and size dependencies calculated here, and for
this reason finding the details of the underlying biological
mechanism is important. In recent years, DnaA has been
shown to have properties reminiscent of the biophysical
model described here [9], where its active and inactive
forms correspond to the roles of proteins A and B above—
see the Supplemental Material [20] for further details,
which includes Refs. [36–41].
Discussion.—In this work we suggested a phenomeno-

logical model which is able to describe partial size control
within a broad class of control strategies, and interpolate
between the case of constant time to division and division at
a critical size, for both size-additive and time-additive
noise. We are able to analytically calculate the size and
interdivision time distributions for the case of symmetric
division relevant to various bacteria. For E. coli, we have
shown that a simple biophysical model in which a constant
volume is added from consequent events of initiation of
DNA replication predicts the following. (1) Cell size
depends exponentially on growth rate. (2) Cell size dis-
tributions are approximately log-normal. (3) The correla-
tion coefficient between size at birth and division is
approximately 1=2. (4) The correlation coefficient between
size at birth and time to division is approximately −1=2.
(5) The ratio of the CV of size and interdivision time
distributions is approximately lnð2Þ. The simplicity of a
biophysical model which implements this idea [19] sug-
gests that this may be a robust way of regulating cell size
and coupling DNA replication and growth.
This interpretation in terms of the incremental model

suggests an outstanding puzzle: can we underpin the precise
molecular mechanism responsible for volume integration?
Can the source of the noise in interdivision times be
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elucidated? Testing this model further in other microorgan-
isms may yield important insights into cell size regulation,
and, in particular, it is intriguing to see if the same ideas are
applicable to cell size control in higher organisms. Recently,
size distributions in other microorganisms were shown to
obey simple scaling laws [42], suggesting this to be a
promising direction, and that the model discussed here may
have a broader range of applicability.
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