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We demonstrate that the insulating one-band Hubbard model on the pyrochlore lattice contains, for
realistic parameters, an extended quantum spin-liquid phase. This is a three-dimensional spin liquid formed
from a highly degenerate manifold of dimer-based states, which is a subset of the classical dimer coverings
obeying the ice rules. It possesses spinon excitations, which are both massive and deconfined, and on
doping it exhibits spin-charge separation. We discuss the realization of this state in effective S ¼ 1=2
pyrochlore materials.

DOI: 10.1103/PhysRevLett.112.207202 PACS numbers: 75.10.Jm, 75.10.Kt, 75.40.Gb

The quantum spin liquid [1] has become the focal point
for our understanding of many of the most fundamental
issues in strongly correlated systems. These include exotic
quantum phases, quantum critical physics, the relevance of
broken symmetries, topological order, entanglement, and
the possibly fractional nature of elementary excitations in
both gapped and gapless states [2]. The search for theo-
retical realizations of these ideas has led to numerous
proposed models, which while highly informative have
generally been too simple or abstract to apply to real
materials [3]. The search for materials realizations is a very
active field where much current attention is focused on
kagome systems [4], triangular organics [5], and other
frustrated S ¼ 1=2 and S ¼ 1 quantum magnets. However,
materials complexities such as impurities, Dzyaloshinskii-
Moriya interactions, spin-orbit coupling, and other anisot-
ropies in real and spin space have to date caused strong
departures from theoretical ideals.
Frustrated quantum magnets offer one of the most

promising routes to spin-liquid behavior [1,2]. Frustration
presents a formidable barricade to theoretical understanding,
because thegroundmanifold is quitegenerally a set of highly
degenerate basis states, with little or no separation emerging
in an exact treatment of the interactions [6]. Numerical
calculations converge very slowly due to this proliferation
of near-ground states [7]. Fluctuations in such a manifold
may lead to a range of exotic phenomena [8–10], and the
departures mentioned above are strong because any pertur-
bation is strongly relevant in a highly degenerate system.
Few exact results are available, although these afford
essential insight [11–14].
In this Letter, we discuss the one-band Hubbard model,

showing that on a half-filled pyrochlore lattice it gives a
highly frustrated intratetrahedral spin model with only
weak perturbations. This model contains an exactly
solvable Klein point, about which there is an extended
region of parameter space where the ground state is a
three-dimensional (3D) quantum spin liquid. This state
hosts massive spinon excitations, which are deconfined
and move in all three dimensions within the lattice. The

parameter range for the spin-liquid phase lies exactly in the
regime of many magnetic materials.
The pyrochlore lattice, shown in Fig. 1, is a 3D array of

corner-sharing tetrahedra, has cubic symmetry, and is a
geometry widespread in transition-metal and rare-earth
oxides. Most such materials have half-filled bands and
are Mott-Hubbard insulators due to their interactions. We
begin with the Hubbard model,

HHubb ¼ −t
X

hiji;σ
c†iσcjσ þ U

X

i

ni↑ni↓; (1)

where c†iσ creates an electron at site i with spin σ and
niσ ¼ c†iσciσ is the number operator. We use it to discuss
the spin liquid with no theoretical abstractions and with
controlled approximations. A perturbative expansion in
t=U for the half-filled band leads to

H ¼ Ht þ J3
X

hhijii
~Si · ~Sj þOðt6=U5Þ; (2)

where hhijii denotes next-neighbor site pairs and

Ht ¼
X
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FIG. 1 (color). Pyrochlore lattice. The magnetic ions (black
circles) form a 3D array of corner-sharing tetrahedra.

PRL 112, 207202 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
23 MAY 2014

0031-9007=14=112(20)=207202(5) 207202-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.207202
http://dx.doi.org/10.1103/PhysRevLett.112.207202
http://dx.doi.org/10.1103/PhysRevLett.112.207202
http://dx.doi.org/10.1103/PhysRevLett.112.207202


is a sum of purely intratetrahedral spin interactions written
in terms of the total spin Sl;tot ¼ Sl1 þ Sl2 þ Sl3 þ Sl4 on
each tetrahedron, l [15]. In Eqs. (2) and (3),

J1 ¼ 4t2=U − 160t4=U3 þOðt6=U5Þ;
J2 ¼ 40t4=U3 þOðt6=U5Þ;
J3 ¼ 4t4=U3 þOðt6=U5Þ; (4)

the very large prefactors in J1 and J2 arising from the many
permutations of fourth-order processes within the tetrahe-
dron. Thus, J3 ≪ J1;2 and to an excellent approximation
one has an intratetrahedral HamiltonianHt, with only weak
interactions coupling spins in different tetrahedra.
Ht (3) has a unique point for one particular parameter

ratio J2 ¼ J2c ¼ −J1, occurring when t=U ¼ 1=
ffiffiffiffiffi
30

p
,

where all singlet and triplet states of the four spins on
each tetrahedron have energy zero (see Supplemental
Material [16]). Thus, any tetrahedron containing a dimer,
a singlet (S ¼ 0) state of any two spins, and represented by
red ellipses in Figs. 1 and 2 has energy zero. Furthermore,
because the number of dimers equals the number of
tetrahedra on the pyrochlore, all states of the whole system
with precisely one dimer per tetrahedron (Fig. 1) are exact,
zero-energy ground states. The set of classical dimer
coverings maps exactly to the six-vertex model, represented
by the six possible “two-in, two-out” configurations of the
black arrows in Figs. 2(a) and 2(b) and, hence, to the ice
problem. Pauling deduced an exponential lower bound
on the number of states in this ground manifold Ng >
ð3=2ÞN=2 with N the system volume (number of tetrahedra)
[17], proving that it has extensive degeneracy. This is a
Klein point [12,16]. It is a dimer liquid with algebraic
correlations, a classical critical point at which all (of the
exponentially many) states are connected by local dimer

fluctuations. The excitations created by breaking a dimer
are two massive spinons, which propagate freely [15].
However, it is unrealistic to expect any physical system

to be exactly at the Klein point. To understand which of its
many properties may be preserved in a real material, it is
essential to analyze the effect of perturbations. Because
every site must be part of one dimer, the quantum
mechanical fluctuations of the dimer liquid are local
rearrangement processes on a closed path. Figure 2(d)
illustrates the minimal possible dimer rearrangement on the
pyrochlore lattice, and Fig. 3 shows more generally how all
such processes may be described by loops, which represent
the overlap of the two dimer coverings connected by the
fluctuation. Here, we extend the loop-graph analysis of
Ref. [15] to 3D to deduce the nature of the pyrochlore
ground state close to the Klein point. A perturbation ΔH ¼P

ijΔJSi · Sj allows us to analyze exactly all the leading
physically relevant terms in the pyrochlore Hamiltonian.
Deviations from the Klein-point ratio, resulting from
alterations to J1 or J2 in Eq. (3), are represented exactly
by considering nearest-neighbor sites hiji, and deviations
from H ¼ Ht, particularly the J3 terms in Eq. (4), are
represented by using next-neighbor sites hhijii.
Loops, or dimer fluctuations, exist on all length scales,

but as we show below the most important contributions
are made by short loops, which describe local processes.
The very shortest loops in the 3D (2D) pyrochlore lattice
are 12- (8-)bond paths around a single hexagon [Fig. 2(d)]
(vacant square [Fig. 2(c)]). Rearranging the 6 (4) dimers
corresponds to flipping the sign of the arrow in the six-
vertex representation, and we refer to local dimer configu-
rations allowing these loops as “flippable plaquettes”
[Figs. 2(c) and 2(d)]. These “Rokhsar-Kivelson” (RK)
loops are zero-energy processes [15]. Nevertheless, dimer
coverings with maximal numbers of flippable plaquettes
also maximize longer contributing loops and, thus, form
the basis for the new ground states in the presence of a
perturbation. In 2D, two of the vertices are special in that all
four edges of the square have an “in-out” arrow configu-
ration [Fig. 2(a)], such that regular arrays of these two can

(a)

(b)

(c) (d)

FIG. 2 (color online). One-dimer configurations on a single
tetrahedron and their six-vertex representations (a) in 2D and
(b) in 3D. (c) The maximally flippable state (all-diagonal dimer
covering) of the checkerboard lattice, which requires only two
vertex types. (d) One hexagon of the pyrochlore lattice with the
dimers of the surrounding tetrahedra in a flippable configuration,
as shown by the black arrows; dashed red ellipses indicate the
flipped dimer state.

FIG. 3 (color). Dimer fluctuation process, shown as a loop of
alternating light and dark blue dimers. This is a 22-bond loop
(see text).
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make every plaquette flippable [Fig. 2(c)]. The degeneracy
of the submanifold of “maximally flippable” states is then
Oð1Þ, and the ground states on both sides of the Klein point
are valence-bond crystals, with a preferred static dimer
order [15].
This result is a special property of the six-vertexmodel in a

square geometry, and the situation in 3D is dramatically
different.All six vertices are equivalent [Fig. 2(b)], and every
tetrahedron has two edges destroying the flippability of the
four associated hexagons (see Supplemental Material [16]),
making it clear that not all hexagons in the 3Dpyrochlore can
be flippable. Our proof of spin-liquid nature around the
Klein point is the demonstration (i) that the groundmanifold
has massive degeneracy and (ii) that this degeneracy is
unbroken by any of the leading quantum fluctuations.
Flippable hexagons can be counted by considering the

four interlocking kagome (111) planes of the pyrochlore
lattice, highlighted in different colors in Fig. 1. The
maximally flippable dimer coverings have bilayers of
tetrahedra ensuring maximal flippability of the hexagons
in two of the kagome planes, shown in blue and green in
Fig. 1, interleaved with equivalent bilayers maximizing the
other two planes (yellow and purple). The maximal number
density of flippable hexagons is 1=3 (see Supplemental
Material [16]). Tetrahedra in the layer between the bilayers
retain a twofold degree of freedom in singlet orientation
(Fig. 1), equivalent to the relative arrow direction between
bilayers. The degeneracy of the maximally flippable
manifold is then Nf ¼ 9 × 2L=3 [16], where the system
volume is N ¼ L3=4 and L is the linear dimension.
To determine the ground manifold in the presence of

physical perturbations, we evaluate the matrix elements of
ΔH for each loop type; specifically, we compute ΔHab ¼
hψajΔHjψbi for states jψai and jψbi differing by one loop
of dimers (Fig. 3). The importance of the maximally
flippable configurations, anticipated above, is proven by
considering all loops on the pyrochlore lattice involving
two or three hexagons and generated by a single RK defect.
The calculations are presented in Supplemental Material
[16], and the results are summarized in Table I. Beyond
the RK loop, the size of the matrix elements clearly falls
exponentially with loop length, demonstrating the key role
of the shortest loops. The ground manifold is, therefore,
composed of all maximally flippable states containing
precisely one RK defect, which may be on any one of
the N=3 flippable hexagons, and hence, the dimension of
this manifold of basis states Np ¼ 3N × 2L=3 is massive
and exponential in L (Supplemental Material [16]).
To construct the ground-state wave function from this

manifold,we require the loopdensity or number of each loop

type per flippable hexagon. Whereas one type of 16-bond
loop process contributes the most energy, the highest
densities are found (Table I) for 22-bond loops, which
correspond to flipping dimers around two hexagons sharing
opposite edges of a single tetrahedron (Fig. 3).Unlike the 2D
case, in 3D the lowest-order loops do interfere, and the
deciding quantum fluctuations are the three shortest con-
tributing loops in Table I (Supplemental Material [16]). By
considering the most general linear combinations jψi ¼P

acajψai of states jψai based on the maximally flippable
configurationswith a single RKdefect, we find that there are
Nf distinct ground-state wave functions optimizing the loop
(dimer fluctuation) contribution and that each of these is a
superposition ofOðNÞ basis wave-function pairs with equal
amplitudes jcaj (Supplemental Material [16]). The sign of
ΔJ causes differences not only in the phase structure of
the variational wave functions (the signs of the coefficients
fcag) [15,16] but also in their energies; we obtain ΔE ¼
−ð1=256Þu2NΔJ forΔJ > 0 andΔE ¼ ð1=128Þv2NΔJ for
ΔJ < 0, where u, v≃ 1 are normalization coefficients.
Because 22-bond loops connect hexagons in neighboring
bilayers, they can be used to illustrate a final, crucial
property. There is no preferred direction for circumscribing
a hexagon, and all such loops contribute the same energy for
either maximally flippable dimer covering of each bilayer.
By extension to any type of interbilayer loop (Supplemental
Material [16]), there is no mechanism to lift the bilayer
degeneracy, and hence, all Np states in the ground manifold
form the same type of minimum-energy state.
To summarize, our loop calculations verify that a highly

degenerate ground manifold persists under physical pertur-
bations away from the Klein point. Furthermore, all states in
this manifold gain energy from mutual resonance. Linear
combinations of these states span all dimensions and break
no lattice symmetries. These are the qualitative energetic and
spatial criteria for a spin liquid.However, a proof of quantum
spin-liquid nature as a strict zero-temperature statement
requires specific topological criteria. In the groundmanifold
of the non-Klein-point model, local loop processes reflect
local gauge-type symmetries and their matrix elements
determine the Nf variational ground states. These states
are linked by OðL2Þ local processes, which correspond to
system-scale, planar (dimension d ¼ 2) loops, reflecting
nonlocal “emergent” Z2 symmetries associated with each
bilayer (Supplemental Material [16]). In systems of finite
size, this symmetry is broken, but the accompanying spectral
gaps are exponentially small in L2. The associated topo-
logical degeneracy in this and other models with d ≥ 1
processes [18] is analogous to 2D quantum dimer models
where the ground states are also equal-amplitude super-
positions of dimer coverings. These models have nonlocal

TABLE I. Lowest-order loops in the pyrochlore lattice [16].

Loop length 12 16 16 20 20 22 24 26

ΔHab 0 0 ΔJ=128 0 −ðΔJ=512Þ −ðΔJ=1024Þ −ðΔJ=2048Þ −ðΔJ=4096Þ
Loop density 1 1

2
1
2

1 1 8 1
2

2
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d ¼ 1 symmetries associated with the parity of the even or
odd number of dimers cut by 1D loops around the entire
system and are understood as gapped quantum liquids with
Z2 topological order [8]. The extension of these topological
concepts to dimer states in 2D systems of real S ¼ 1=2
quantum spins has been demonstrated in recent detailed
calculations [19,20]. Our analysis provides several key
additional ingredients to this discussion (Supplemental
Material [16]), proving rigorously from energetic and
topological criteria that the pyrochlore spinmodel possesses
zero-temperature quantum spin-liquid behavior in 3D over
an extended region of the non-Klein-point parameter space,
as represented in Fig. 4.
The basis states of this spin liquid are a subset of the

Klein-point dimer coverings, and hence, are “divergence-
free” in the six-vertex arrow representation (Fig. 2). It has
been argued by analogy with continuum Gaussian electro-
statics that spin-ice systems can be described by a U(1)
gauge field theory (Supplemental Material [16]). However,
for our microscopic model, where all states in the ground
manifold are known exactly, as are all loop processes
connecting them (Table I), we find that the local dimer
rearrangements are more complex than those of a U(1)
gauge theory alone. Independent of an approximate field-
theory description, the variational ground states we have
constructed at finite ΔJ are an exact quantum spin liquid,
meaning that states in the ground manifold are no longer
individual eigenstates of the non-Klein-point Hamiltonian
and are connected by quantum fluctuations to all other
states in the same topological sector.
In the schematic phase diagram of Fig. 4, the solid lines

indicate phase transitions, which may be of first or second
order; different types of ground state become increasingly
competitive as the intratetrahedron singlet-triplet energy
splittings increase, but in contrast to 2D a transition requires
a finite separation from the Klein point. The dashed lines

indicate the energy scales for a thermally driven crossover
from quantum to classical behavior, occurring when the
temperature exceeds the splitting of the Klein-point mani-
fold and the physics of the “Coulomb phase” of spinons is
restored [15]. The absolute value of this splitting is remark-
able. From the matrix elements in Table I, it is 2 orders of
magnitude smaller even than the perturbation ΔJ, so that,
even far from the Klein point, the entire manifold would be
split on an energy scalewell below 1 K for any real material.
The practical criterion for spin-liquid nature is that no local
probe can discern any type of order. At finite temperatures,
any expectation value is a Gibbs average, a sum over
exponentially many states with small (or vanishing) energy
splittings, and thus will vanish for temperatures above (or
below) the crossover (Supplemental Material [16]).
Armed with a microscopic model for a quantum spin-

liquid state, we consider the nature of its excitations. High-
dimensional fractionalization of both spin [15] and charge
[21] degrees of freedom has been considered before in
pyrochlore-based geometries. A spin excitation is the
destruction of a dimer to create one defect tetrahedron
(DT) and two free spins [Fig. 5(a)]. The finite energy cost
for this process means these are massive spinons, with
ms ¼ 15J2=16 (Supplemental Material [16]). From the
dimensional reduction [16] in our quantum spin liquid,
the spinons are constrained to move on lines [22]. In the
maximally flippable ground manifold (Fig. 1), the prolifer-
ation of local loops allows spinons to move easily from one
line to another [15], and therefore, their motion is fully 3D.
This ready availability of quantum fluctuations, exchanging
spinon and dimer positions when Ht (3) is applied to
individual tetrahedra [Fig. 5(a)], means that the spinons
possess quantum dynamics and propagate at T ¼ 0.
Charge degrees of freedom arise from a small concen-

tration of dopants in the otherwise half-filled band. The
energy penalty (a DT) is paid on introducing the hole, and
the free spinon motion causes automatic spin-charge
separation [Fig. 5(b)], leaving “holons” in the spin dimer
background. Holon propagation occurs due to the kinetic
term −t

P
hiji;σc

†
iσcjσ in HHubb (1). For such a lattice model

in 3D, the statistics of spinons and holons can be computed
from their hopping algebra [23], but this analysis requires a
detailed treatment of projection operators describing

(a) (b)

FIG. 5 (color online). Representation of (a) a dissociated spinon
pair and (b) a spin-charge-separated spinon and hole.c

J

0

3

2
_

2J J

T critical
classical

Klein Point

quantum

disordered

QSL

FIG. 4. Schematic phase diagram for the quantum spin liquid
(QSL) phase of the S ¼ 1=2 pyrochlore. J2 − J2c and J3
represent respectively the intra- and intertetrahedron perturba-
tions away from the Klein point. Solid lines indicate phase
transitions, and dashed lines indicate crossovers.
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allowed states of the spin background and lies beyond the
scope of the current Letter.
It is easy to show (Supplemental Material [16]) that

holons experience a weak attraction to DTs. However, a
direct binding would deny the holons the kinetic energy
gain of propagating, albeit with a bandwidth highly
renormalized by the spin background. Dynamical holons
experiencing a mutually attractive interaction by lingering
close to DTs would, by these simple considerations, have a
weak tendency towards superconductivity. This supercon-
ducting state is driven not by the existence of valence-bond
states [24] but by the special frustration near the
Klein point.
We conclude by reviewing the possibilities for finding this

spin-liquid state in a real pyrochlore material. The Klein-
point value t=U ¼ 1=

ffiffiffiffiffi
30

p
iswellwithin the parameter range

of typical correlated insulators. Unfortunately, despite the
wealth of pyrochlore and spinelmaterials available, very few
structurally regular S ¼ 1=2 systems are known.
A fundamental property of the model (3) is that SU(2)

spin symmetry is preserved, a requirement best satisfied by
magnetic ions in the 3d series; to date the only candidates
are the rare-earth vanadates M2V2O7, which possess an
additional t2g orbital degeneracy and are ferromagnetic. For
pyrochlores of 4d ions, the SU(2) character is removed by a
significant spin-orbit coupling. Among 5d ions, pyrochlore
iridates have received much recent attention [25] and
possess an effective J ¼ 1=2 degree of freedom, but it is
not possible to obtain effective SU(2)-symmetric inter-
actions in this geometry; these materials may also be too
weakly interacting (borderline metallic) to approach the
magnetic limit. However, we stress again one of our key
results that energy scales for splitting of the degenerate
manifold (Fig. 4) are very low, making spin-liquid behavior
appear at any experimentally achievable temperatures even
in systems with nontrivial perturbations from the Klein
point. We suggest that pressure-dependent investigation of
V4þ and Cu2þ materials may be the most promising avenue
to find evidence for the spin-liquid state of the insulating
spin-1=2 pyrochlore.
In summary, we have demonstrated rigorously that the

half-filled one-band Hubbard model in the pyrochlore
geometry hosts a 3D quantum spin liquid. This spin liquid
emerges, over an extended parameter regime at zero
temperature, from a highly degenerate manifold of
valence-bond states. It possesses massive, deconfined
spinon excitations and shows spin-charge separation on
doping. It is a quantum mechanical state essentially differ-
ent from those studied previously, including in the 2D
pyrochlore [15]. This is one of the very few systems where
unbroken degeneracies and exact deconfinement emerge in
a realistic model with only short-range interactions. Finite-
temperature evidence for such spin-liquid physics may be
detectable in real pyrochlore materials.
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