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We present an analytic theory of quantum criticality in the quasi-one-dimensional topological Anderson
insulators of class AIII and BDI. We describe the systems in terms of two parameters (g, χ) representing
localization and topological properties, respectively. Surfaces of half-integer valued χ define phase
boundaries between distinct topological sectors. Upon increasing system size, the two parameters exhibit
flow similar to the celebrated two-parameter flow describing the class A quantum Hall insulator. However,
unlike the quantum Hall system, an exact analytical description of the entire phase diagram can be given.
We check the quantitative validity of our theory by comparison to numerical transfer matrix computations.
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The recent discovery of band insulators carrying topo-
logically protected invariants has triggered a surge of
research activity [1]. With regard to any potential applica-
tion of these materials, stability against perturbations,
including the inevitable presence of static disorder, is a
prime issue. First indications that topology has qualitative
effects on the localization properties of disordered elec-
tronic systems were, in fact, noticed before the advent of
topological materials [2–5]. However, the reverse question,
i.e., what happens if disorder is added to a clean topological
band insulator (TI), has drawn attention only recently
[6–10]. It is now understood that in low dimensions,
d ≤ 2, disorder drives a crossover from a topological band
insulator to a topological variant of an Anderson insulator
(TAI). The latter has to be topologically charged because
the phases carrying different indices in the clean case
cannot simply “disappear” even in the presence of disorder
strong enough to fill the band gap. This means that the
phase transition points emerging when a control parameter
μ characterizing the clean system is varied must turn into
lines of phase transitions meandering through a phase plane
spanned by μ and the disorder strength w (cf. Fig. 1.) For a
number of TIs, the ensuing phase diagrams have been
portrayed by numerical methods [6–8], and for one-
dimensional topological superconductors, phase transition
points have been identified by transfer matrix tech-
niques [9,10].
However, the best studied example of a TAI remains the

quantum Hall (QH) insulator. Within the QH context, the
crucial role played by disorder with regard to criticality,
edge state formation, and other phenomena was appreciated
right after the discovery of the effect [11]. Its influence on
the universal physics of the QH effect is described by
Pruisken’s theory [12], a field theory governed by two
parameters (g, χ), where g is a measure of longitudinal

electric conduction and χ is a topological parameter
proportional to the Hall conductance. At the bare level,
both g and χ are nonuniversal functions of system
parameters, where g ≫ 1 signifies a “weakly disordered”
system, and half-integer values χ ¼ nþ 1=2 define the
demarcation lines between sectors of different topologi-
cal index. Increasing the system size, the parameters
(g, χ) undergo renormalization group flow either towards
TAI states (0, n) with vanishing conductance and integer
Hall angle or towards QH transition points (g�, nþ 1=2)
at criticality. Unfortunately, the fixed points are buried
deep in the realm of strong coupling, g� ¼ Oð1Þ, and
thus far evade analytical treatment. Similar physics is
observed for the class C quantum spin Hall system [13],
although in this case equivalence to a classical perco-
lation transition allows for more complete analytic
treatment [14].
The statement made herein is that a nearly identical

scenario repeats itself in quasi-1D disordered topological
insulators, viz. the Z insulators of symmetry classes AIII
and BDI. In these cases the topological index n, playing a
role analogous to the number of filled Landau levels in QH,
counts the number of zero-energy edge states. The addition
of disorder to quasi-1D insulators of finite length L creates
intragap states, which turn the system into a conductor,
gðLÞ ≠ 0, thus compromising its topological integrity:
while the index n ∈ Z of a given system continues to be
integer valued, its value depends on the impurity configu-
ration, with generally noninteger mean χ ≡ hni. Only upon
increasing the system size to infinity localization effects
ultimately restore a self-averaging topological index
χðL → ∞Þ ∈ Z, which is now stabilized by the presence
of disorder. The function χðLÞ, describing the reentrance
flow towards an integer, plays a role conceptually analo-
gous to the 2D Hall conductance. Our main results are flow
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diagrams for the two parameters ðgðLÞ; χðLÞÞ strikingly
similar to those of the QH systems, but unlike those fully
tractable by analytic means.
Before turning to model-specific calculations, let us

discuss the structure of the flow in qualitative terms. In
the absence of disorder, χ ¼ n reduces to the standard
Z-valued winding number [15], characterizing the clean
system. Disorder strong enough to fill the gap, but too weak
to localize, L < ~ξ, where ~ξ ∼ Nl is the localization length,
l ∼ jwj2 the elastic scattering mean free path, and N the
number of quantum channels carried by the system, renders
the system effectively metallic with Ohmic conductance
gðLÞ ¼ ~ξ=L. The index χðLÞ ¼ ~χðμ; w;…Þ ≠ n here
assumes a nonuniversal real value, where (…) denotes
dependence on all other microscopic system parameters.
Upon increasing L, the system enters the localized regime,
gðLÞ ∼ exp½−L=ξð~χÞ�, characterized by an effective length
scale ξð~χÞ ∼ j~χ − n − 1=2j−ν, where ν is a correlation length
exponent. Along with the flow gðLÞ → 0 towards a TAI
configuration, the index χðLÞ flows from its bare value ~χ

back to the nearest integer χðLÞ →
L→∞½~χ� ¼ n. The exponen-

tially fast two-parameter flow ðgðLÞ; χðLÞÞ → ð0; nÞþ
Oðe−L=ξð~χÞÞ is the quasi-1D analog of the 2D class A
QH scaling [12,16] (cf. Fig. 1). Transitions between
distinct topological sectors are marked by half-integer
values ~χ ¼ nþ 1=2. At criticality the parameter χðLÞ ¼
~χ ¼ nþ 1=2 remains stationary and algebraic scaling
gðLÞ ∼ L−α of the average conductance signifies the
presence of a critical delocalized state. Such delocalization
at fine-tuned parameter values has been observed first for
chiral classes [2] and then for all five symmetry classes [4],

which were later understood to possess topologically
nontrivial band insulator limits.
The analogy to QH extends to the formal level in that the

quasi-1D insulators, too, are described by a two-parameter
field theory. On the bare level, the theory is determined by
the pair (~ξ, ~χ) describing the system at length scales
l < L < ~ξ. Technically, these constants are computed from
a self-consistent Born approximation (SCBA) to the Green
function, and criticality is detected by probing the half-
integerness of ~χ. We numerically confirm that this pro-
cedure accurately describes the phase diagram for given
models of disorder. The running observables ðgðLÞ; χðLÞÞ
are then extracted by probing the sensitivity of the theory to
twists in real-space boundary conditions, an operation
analogous to Pruisken’s “background field” method
[17,18]. Before turning to the BDI insulator, we introduce
the approach on the somewhat simpler AIII system.
AIII insulator.—Consider a system of N chains of length

L described by the Hamiltonian Ĥ ¼ P
lfC†

l ½ðμþ tÞþ
ðμ − tÞP̂�Clþ1 þ C†

l V̂lClþ1g þ H:c, where Cl ¼ fcl;jg is
a vector of fermion creation operators, j ¼ 1;…; N is
the chain index, l ¼ 1;…; L labels chain sites, the intra-
chain hopping is staggered by the parameter a ¼ jμj − t,
and P̂cl;j ¼ ð−Þlcl;j acts as a “parity operator.” The matrix
V̂l describes the random interchain hopping, which is
Gaussian distributed with correlators hVij

l ðVi0j0
l0 Þ�i ¼

ðw2=NÞδijδi0j0δll0 . The anticommutativity of our (time-
reversal noninvariant) Hamiltonian with sublattice parity
½Ĥ; P̂�þ ¼ 0 indicates that the system belongs to symmetry
class AIII. In the absence of disorder, a topolgical index,

FIG. 1 (color online). Left: (μ, w) phase diagram of TI. Hatched areas denote crossover regions between band (BI) and Anderson
insulator. Red lines mark phase transitions between sectors of different topological index n. The inset describes a situation where the
clean system, w ¼ 0, has degeneracies and phase transition points coalesce (e.g., the case of N > 1 uncoupled topological chains where
interchain hopping is solely due to disorder). Right: The corresponding (g, χ) phase diagram. For bare parameters corresponding to the
bulk of a topological phase (cf. the lines marked by a solid and a crossed box), there is exponentially fast flow in the system size L
towards an insulating configuration: g ¼ 0 and an integer topological index χ ¼ n. At criticality, χ þ 1=2 (open box), the flow towards
g ¼ 0 is algebraic in L, a signature of a critical state.
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or “winding number,” may be defined as [15] n≡
−i

P
N
q¼1

R
2π
0 ðdk=2πÞtrðQ−1∂kQÞ, where Q≡Hþ− is the

block of the Hamiltonian connecting sites of positive
and negative parity, and k; q are Fourier indices, ck;q ¼
ð1=LNÞPl;je

iðkl=Lþq2πj=NÞcl;j. Assuming real hopping
amplitude t > 0 for simplicity, a straightforward calcula-
tion shows that n ¼ NΘðt − jμjÞ, which identifies the
amplitude μ as a topological control parameter triggering
a transition from n ¼ 0 to n ¼ N at μ ¼ �t [19]. To access
the index n in a way not tied to translational invariance, we
imagine the chains compactified to a ring of circumference
L and pierced by a staggered flux ϕ0 which affects the
fermions as cl;j → eiP̂ϕ0l=Lcl;j and the momentum repre-
sentation of the chiral blocks as QðkÞ → Qðkþ ϕ0Þ and
Q†ðkÞ → Q†ðk − ϕ0Þ, respectively. Now consider the gen-
erating function ZðϕÞ ¼ det ðĜ−1

0 ðϕ0ÞÞ= det ðĜ−1
0 ð−iϕ1ÞÞ,

where ϕ ¼ ðϕ0;ϕ1ÞT and ĜϵðϕαÞ ¼ ½ϵþ − ĤðϕαÞ�−1 is the
retarded Green function of the gauged Hamiltonian.
The transformation of Q then implies the representation
n≡ χ ¼ −i∂ϕ0

jϕ¼ð0;0ÞZðϕÞ, which no longer relies on the
momentum space language. In this formula we also
anticipate that, in nontranslationally invariant systems, n
may generalize to a noninteger parameter χ.
Field theory.—We next ask how the system responds to

the presence of disorder. The generating function averaged
over a Gaussian distribution of the bond amplitudes Vj;l
affords a representation in terms of a nonlinear σ model,
ZðϕÞ ¼ R

DT expð−S½T�Þ, with the action [3]

S½T� ¼
Z

L

0

dx

�
~ξ

4
strð∂xT∂xT−1Þ þ ~χstrðT−1∂xTÞ

�
: (1)

Here, “str” is the supertrace and

T ¼ U

�
ey1 □

□ eiy0

�
U−1

is a 2 × 2 supermatrix field parametrizing the field space
GLð1j1Þ [20] in terms of two radial coordinates y1 ∈ R,
y0 ∈ ½0; 2π� and two Grassmann valued angular variables
ρ; σ, where

U ¼ exp

�
□ ρ
σ □

�
.

The theory contains two coupling constants, the localiza-
tion length ~ξ and the coefficient of the topological term ~χ.
The latter is computed from the underlying microscopic
theory as [3] ~χ ¼ −ði=2ÞtrðĜþP̂∂kĤÞ, where Ĝþ now
stands for the zero-energy Green function averaged over
disorder within the self-consistent Born approximation.
For vanishingly weak disorder, Gþ → −Ĥ−1 and ~χ → n
reduces to the winding number. The value of ~χ in the
presence of disorder depends on model specifics and will

be discussed in more concrete terms below. The external
parameters ϕ enter the theory through a twisted boundary
condition, TðLÞ ¼ diagðeϕ1 ; eiϕ0Þ, and Tð0Þ ¼ 1. Finally,
we note that the boundary shift in the noncompact “angle”
ϕ1 enables us to extract the conductance of the wire as
[21,22] g ¼ ð∂2

0 þ ∂2
1Þjϕ¼ð0;0ÞZ, where ∂α ¼ ∂ϕα

for brev-
ity. The rationale behind this expression is that the second
derivatives ∂2

αZ ∼ ∂2
ϕ ln det ðG0ðϕαÞÞ probe the average

“curvature” of the ϕ-dependent energy levels which,
according to Thouless [23], is a measure of the system’s
conductance. Since in the chiral classes retarded and
advanced zero-energy Green functions are related [3,22],
the conductance is indeed expressible through the generat-
ing function of a single Green function.
Our goal is to understand the scaling of the observables

(g, χ) in dependence on the system size L. In the metallic
regime l < L ≪ ~ξ, “size quantization" of the operator
∂xT∂xT−1 suppresses fluctuations of T. Substitution of
the minimal configuration compatible with the boundary
conditions TðxÞ ¼ diagðeϕ1x=L; eiϕ0x=LÞ then yields ðg; χÞ ¼
ð~ξ=L; ~χÞ, i.e., an Ohmic conductance, and a topological
index set by the bare value ~χ. To understand what happens
upon entering the localization regime, L≳ ~ξ, it is conven-
ient to think of x as imaginary time and of ZðϕÞ≡Ψðϕ; LÞ
as the path integral describing the free motion [first term in
the action Eq. (1)] of a particle moving on the manifold
GLð1j1Þ in the presence of a constant gauge flux (the
second term). Central to that picture (cf. Ref. [3] and the
Supplemental Material [24] for a more extensive discus-
sion) is an interpretation of Ψðϕ; LÞ as a propagator subject
to the imaginary time Schrödinger or heat equation

~ξ∂xΨðy;xÞ¼ 1

JðyÞð∂α− iAαÞJðyÞð∂α− iAαÞΨðy;xÞ; (2)

where J−1∂αJ∂α is the radial Laplacian on GLð1j1Þ, the
Jacobian JðyÞ ¼ sinh−2½1

2
ðy1 − iy0Þ� accounts for the cur-

vature of that manifold, and the vector potential A ¼
~χð1; iÞT represents the flux. The eigenfunctions of the
gauge-coupled Laplacian are given by ΨlðyÞ ¼
sinh½1

2
ðy1 − iy0Þ�eilαyα , and the corresponding eigenvalues

by ϵl ¼ ðl0 − ~χÞ2 þ ðl1 − i~χÞ2. Given the eigensystem,
the time-dependent equation is solved by the spectral
decomposition, which, after substitution of the
boundary values y ¼ ϕ, takes the form Ψðϕ; LÞ ¼ 1þ
1
π

P
l0∈Zþ1

2

R
dl1ðl0 þ il1Þ−1ΨlðϕÞe−ϵlL=~ξ, where 1 is by

supersymmetric normalization of the partition function
Zð0; xÞ ¼ 1, and the l-dependent denominator implements
the spectral decomposition of the initial condition
Ψðϕ; x → 0Þ.
From this representation, it is straightforward to compute

the first- and second-order expansions in ϕ to arrive at the
result
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g¼
ffiffiffiffiffiffi
~ξ

πL

s X
l0∈Zþ1=2

e−ðl0−~χÞ2L=~ξ;

χ¼ n−
1

4

X
l0∈Zþ1=2

�
erf

� ffiffiffiffi
L
~ξ

s
ðl0−δ~χÞ

�
− ðδ~χ↔−δ~χÞ

�
; (3)

where δ~χ ¼ ~χ − n is the deviation of ~χ off the nearest
integer value n. For generic bare values (~ξ, ~χ), the two
formulas describe an exponentially fast approach towards
an insulating state (0, n) upon increasing length L. At
criticality (~ξ, nþ 1=2), the topological angle remains
invariant, while an algebraic decay of the conductance
gðLÞ ≈ ð~ξ=πLÞ1=2 signifies the presence of a delocalized
state at the band center. The emergence of power law
scaling at criticality can be described in terms of an
effective correlation length ξðχÞ ¼ ~ξj~χ − n − 1=2j−ν.
Comparing the ansatz g ∼ exp½−L=ξð~χÞ� to the result
above, we identify the correlation length exponent ν ¼ 2
[25]. A number of flow lines are shown graphically in
Fig. 2. which is the 1D analog of the two-parameter flow
diagram [16] describing criticality in the integer QH
system.
Class BDI.—We next extend our discussion to the

presence of time-reversal, symmetry class BDI. Systems
of this type are realized, e.g., Ref. [26], as lattice p-wave
superconductors with Hamiltonian Ĥ ¼ P

L
l¼1½C†

l Ĥ0;lClþ
ðC†

l Ĥ1;lClþ1 þ H:c:Þ�, where the spinless fermion operators
Cl ¼ ðcl;j; c†l;jÞT are vectors in channel and Nambu spaces.

The on-site part of the Hamiltonian, Ĥ0;l ¼ ðμ=2þ V̂lÞσ3,
contains the chemical potential μ and real symmetric
interchain matrices V̂l, with σi acting in Nambu space.
The contribution Ĥ1;l ¼ − 1

2
tlσ3 þ i

2
Δ̂lσ2 contains nearest-

neighbor hopping tl, and the order parameter Δ̂l here is
assumed to be imaginary for convenience. Quantities
carrying a subscript l may contain site-dependent random
contributions. The first quantized representation of Ĥ obeys
the chiral symmetry ½P̂; Ĥ�þ ¼ 0, with P̂ ¼ σ1. The clean

system supports n ≤ N Majorana end states, where n
decreases upon increasing μ. Generalizing to the presence
of disorder, we obtain a pattern of phase transition lines
similar to the one discussed above. Before turning to field
theory, we apply transfer matrix methods to a numerical
description of the ensuing phase portrait.
Transfer matrix.—Defining a doublet ηl ¼ ðψ lþ1;ψ lÞT ,

one verifies that the zero-energy eigenfunctions ψ l
of the lattice Hamiltonian obey the recursion relation
ηlþ1 ¼ T lηl, where

T l ¼
�
−H−1

1;lH0;l −H−1
1;lH

†
1;l

1 0

�
;

and we assumed nondegeneracy of the hopping matrices
fH1;lg. We iterate this equation to obtain ηL ¼ T η1, where
T ¼ Q

L
l T l is the transfer matrix. The presence of a chiral

structure means that T ¼ bdiagðT 11; T 22Þ can be brought
to a block-diagonal form. Representing the positive eigen-
values of T 11 as expðLλjÞ, j ¼ 1;…; N, the index n of
individual systems is given by the number of negative
Lyapunov exponents, λj < 0 [27]. We numerically compute
the average of these numbers by sampling from a Gaussian
distribution of on-site potentials V̂l with correlators

hVij
l V

i0j0
l i ¼ ðw2=NÞðδii0δjj0 þ δij0δji0 Þ and for a model with

t ¼ Δ. The results are shown in Fig. 3, where boxes
indicate changes of the topological number.
Field theory.—The field theoretical description of the

system parallels that of the AIII insulator. Because of time-
reversal invariance, the fields now are 4 × 4 matrices
spanning the coset space GLð2j2Þ=OSpð2j2Þ [20], and
the field action is given by Eq. (1) as before. As in class

0.5 1.0 1.5 2.0

6

4

2

0

ln g

FIG. 2 (color online). Flow of the conductance g and the
topological parameter χ as a function of system size. Dots are for
values L=~ξ ¼ 1

4
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FIG. 3 (color online). Phase diagram of the class BDI 3-channel
wire. Dashed lines show crossover regions between BI and AI or
TI and TAI phases, derived from the SCBA. Solid lines
correspond to half-integer values of the SCBA computed index
~χ and mark boundaries between phases of different n. BI and AI
have n ¼ 0, while n > 0 for TI and TAI. Data points are phase
boundaries found from a numerical analysis of Lyapunov
exponents λj.
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AIII, the topological coupling constant is given by
~χ ¼ −ði=2ÞtrðĜþP̂∂kĤÞ, where the Green function Ĝþ ¼
ði0 − Ĥ − Σ̂Þ−1 contains a self-energy Σ̂ ¼ −iΣ0σ0 þ Σ3σ3.
For the random V̂l also used in the transfer matrix study, the
latter is determined by the SCBA equation −iΣ̂a ¼
iaw2trðĜþ

lj;ljσaÞ. Solving this algebraic equation numeri-
cally, one obtains contour lines of half-integer ~χ in excellent
agreement with the numerical transfer matrix data
(cf. Fig. 3). The observable pair (g, χ) can be extracted
from the field theory as in the AIII theory. Referring to the
Supplemental Material [24] for details, we note that the
analysis of a heat equation, somewhat more complicated
than the one before, reveals a flow pattern similar to the one
shown in Fig. 2: delocalization at half-integer ~χ, and
exponentially fast flow to integer χ away from these critical
values.
Edge states.—The analogies to the 2D quantum Hall

effects extend to the physics at the boundary. For generic
~χ and at length scales large in comparison to the locali-
zation ξð~χÞ the theory is effectively described by an
action Seff ½T� ¼

R
L
0 dx n strðT−1∂xTÞ ¼ nfstr ln ½TðLÞ�−

str ln ½Tð0Þ�g. This is the 1D analog of the quantum Hall
boundary action. Much as the latter requires integer quan-
tization of the Hall conductivity (i.e., fully developed bulk
localization), the multivaluedness of the logarithm requires
integer index n. The operators n str lnðTÞ generate a peak
nδðϵÞ in the quasiparticle density of states [3]; i.e., they
describe the presence of n edge states at the left and the right
boundary of the system, the 1D analog of QH edge states.
Discussion.—In this Letter, we have presented the first

fully analytical description of disorder-induced quantum
criticality in quasi-one-dimensional Z-topological band
insulators. The theory describes the systems in terms of
the configurational average of two fundamental variables,
the conductance and the topological index. It predicts the
evolution of these variables from their initial values,
depending on the system’s microscopic parameters, to
universal values at large system size. Knowledge of both
the microscopic bare values of the observables and the flow
pattern enables us to describe critical scaling in quantitative
agreement with numerical simulations. The main, some-
what counterintuitive, message is the reentrance behavior
and stabilization of the topological index by the localization
effects. We have discussed this behavior for insulators of
class AIII and BDI, and the third Z-topological quantum
wire, class CII, can be described in similar terms. Our
analysis testifies to a large degree of universality in the
low-energy physics of the one- and two-dimensional
Z-topological insulators.
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