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We show that the hosing instability can be suppressed after the saturation of the self-modulation
instability of a long particle bunch if the plasma density perturbation is linear. We derive scalings for
maximum bunch tilts and seeds for the self-modulation instability to ensure stable propagation beyond
saturation of self-modulation instability. Numerical solutions of the reduced hosing equations and three-
dimensional particle-in-cell simulations confirm our analytical findings. Our results may also apply when a
train of particle bunches or laser pulses excites a linear wake.

DOI: 10.1103/PhysRevLett.112.205001 PACS numbers: 52.40.Mj, 52.35.-g, 52.65.Rr

Plasma accelerators are witnessing impressive advances
[1], with experiments using 1–100 J, focused (σr ≃ 10 μm)
and short (σz ≃ 10 μm) laser wakefield accelerator [2] or
particle plasma wakefield accelerator (PWFA) [3] drivers to
excite large amplitude plasma wakefields for 1–40 GeV
electron acceleration in 1–80 cm [4,5]. To increase energy
gain beyond this limit,≳10 kJ, short (σz ≃ 100 μm) proton
bunches have been proposed as drivers for 600 GeV
electron acceleration in 600 m long plasmas [proton
driven plasma wakefield accelerator (PDPWFA) [6]].
However, proton bunches available today are longer than
the plasma wavelength λp even at low plasma densities
(n0 ≃ 1014–1016 cm−3). These bunches are thus suited to
drive large acceleration gradients (∼1 GeV=m) through
the self-modulation instability (SMI) [7,8], provided that
plasma ion motion is avoided [9]. Unlike current PWFA
experiments, which excite strongly nonlinear wakes [10],
PDPWFA experiments will then operate in the linear
regime. SMI experiments of electron and positron
bunches were also proposed to test key physics of the
PDPWFA [11].
The hosing instability (HI), which can lead to bunch

breakup [12,13], is considered a major impediment for the
self-modulated (SM) PWFA, since SMI and HI growth
rates are similar [15]. Bunch breakup could thus occur
before SMI saturation. Moreover, the HI could lead to
bunch breakup even after saturation of the SMI, where
particle acceleration can occur. The mitigation of the HI is
therefore crucial for SM PWFAs.
In this Letter we show that hosing can be stabilized if the

SMI can reach a fully saturated state and the plasma density
perturbations (δnp=n0 ≪ 1) are much smaller than the
background plasma density; i.e., the wakefields are in
the linear regime. We determine the amount of seeding
for SMI saturation before beam breakup due to the HI.
If this occurs, stable wakefields in the SM-PWFA regime
can be excited and maintained over long acceleration

distances. Beam breakup due to the HI can still occur
when beam density perturbations reach 100% in the
blowout regime and in this case stabilization might be
achieved through the use of a correlated energy spread.
Numerical solutions of the reduced set of differential
equations for the bunch centroid evolution and three-
dimensional (3D) particle-in-cell (PIC) simulations with
OSIRIS [14] confirm analytical findings.
We start by describing centroid displacements xc

of bunches with density profiles given by nb ¼
ðnb0r2b0=r2bÞ½Θðrb − rÞ þ δðr − rbÞxc cos θ�, where nb0 is
the initial bunch density, ΘðxÞ is the Heaviside function,
and where δðxÞ is the Dirac delta function. The bunch
radius is rb, the transverse coordinates are (x, y),
rb0 ¼ rbðz ¼ 0; ξÞ, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and the azimuthal angle

is θ. In the narrow bunch limit (kprb ≪ 1), hosing can be
described by [15]

∂2xc
∂z2 ¼k2β

Z
ξ

−∞
n∥ðξ0Þkp½xcðξ0Þ−xcðξÞ�sin½kpðξ−ξ0Þ�dξ0; (1)

where k2β ¼ k2pmenb0=ð2γmbn0Þ and kp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πn0e2=me

p

are the betatron and plasma wave numbers, e and me
are the electron charge and mass, and qb, mb, γ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2b=c

2
q

are the bunch particles’ charge, mass,

and relativistic factor, and vb is its velocity. The co-moving
frame coordinate, ξ ¼ z − vbt is used, where ξ is the
location within the beam, and n∥ ¼ r2b0=r

2
b.

Similarly to laser hosing [16] Eq. (1) can be recast as

� ∂2

∂z2 þ
ek2β
q

δnp
n0

�
xc ¼ k2βxw; (2a)

� ∂2

∂ξ2 þ k2p

�
xw ¼ k2pn∥xc; (2b)
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� ∂2

∂ξ2 þ k2p

�
δnp
n0

¼ qbk2p
e

n∥; (2c)

where we identify xw as the wake centroid.
Equations (2a)–(2c) show that hosing occurs due to the
coupling of xc, oscillating in z at kβðδnp=n0Þ1=2, and xw,
oscillating in ξ at kp. The coupling term also includes the
beam density n∥, which drives the harmonic oscillator
Eq. (2c) for δnp=n0. When linearized, i.e., when the beam
density and the wake amplitudes are fixed, these equations
provide various regimes of growth for hosing that can be
identified by which of the first two equations in Eqs. (2) is
nearly resonant. When xw oscillates near kp, the instability
is in the long pulse regime, which is the regime of interest
for current long beam research where the number of
exponentiations scales as Γz ∝ ðn∥k2βz2kpξÞ1=3.
If one wants to couple the SMI with the HI an additional

equation that relates the evolution of the beam density to
the wake amplitude is needed [15]. However, coupling of a
self-modulated beam or a train of beamlets with the HI can
be studied without this additional equation. Analysis of
Eqs. (2) indicates that a train of bunches can propagate
without significant centroid oscillations for kβz ≫ 1. This
is demonstrated in Fig. 1(a), comparing numerical solutions
to Eq. (1) or Eq. (2) for an electron bunch with a flattop
density profile (n∥ ¼ 1 ¼ cst) with a sharp rise (black) and
for a train of bunches (red) after kβz ¼ 15. The bunch train
profile is shown in Fig. 1(b) (red) and it was taken from a
3D PIC simulation (described later) after a long beam had
undergone the SMI. For the bunch train [Fig. 1(a)] xc is up

to 6–7 orders of magnitude smaller than for the n∥ ¼ 1
case, demonstrating possible suppression of hosing for
fully self-modulated beams.
Hosing of a fully self-modulated beam or a train of

bunches cannot be described in terms of the often quoted
asymptotic solutions and regimes such as the long pulse
regime. As the SMI occurs and n∥ becomes modulated the
coupling term on the right-hand side of Eq. (2b) leads to
harmonic generation of each quantity. As the number of
harmonics increases the analysis of the interaction between
the HI and the SMI becomes more difficult to analyze.
Therefore, to understand hosing suppression in the wake
driven by a train of bunches we consider a particle model
with n∥ ≡ nSM∥ ¼ P

m
l¼0 k

−1
p nlδðξ − ξlÞ, where ξl is the

location in ξ of the lth beamlet (or particle), and where
k−1p nl is proportional to its charge. Similar models were
employed to investigate beam breakup in rf accelerators
[17] and to study trapped particle instabilities in plasma
waves [18]. Inserting nSM∥ into Eq. (2) yields

∂2xm
∂z2 þ xmðzÞk2β

�
δnp
n0

q
e

�

m
¼ k2β

Xm

l¼0

nlwlxlðzÞ; (3)

where xm¼xcðz;ξmÞ, ðδnp=n0Þm¼
P

m
l¼0nlsin½kpðξl−ξmÞ�

is the amplitude of plasma density fluctuations at ξ ¼ ξm,
andwl ¼ sin ½kpðξl − ξmÞ� is a weighting factor. Equation (3)
shows that xm is described by a driven harmonic oscillator
with natural frequency k2m ¼ k2βððq=eÞδn=n0Þm. The driving
term is the weighted centroid oscillations of the preceding
beamlets,

P
lnlwlxl.

To understand how hosing of a train of short bunches
evolves, we examine the first few terms in Eq. (3) with
nl ¼ 1, i.e., implicitly assuming that the wake perturbation is
enough to guide the beam with given emittance. For m ¼ 0,
∂2x0=∂z2 ¼ 0. If ∂x0=∂z ¼ 0 at z ¼ 0, then x0 ¼ xc0. For
m ¼ 1, ∂2x1=∂z2þk2βðq=eÞsin ½kpðξ0− ξ1Þ�ðx1−x0Þ ¼ 0.
For x0 ¼ 0 and ∂x1=∂z ¼ 0 then x1 ¼ x1c cos
½zkβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðq=eÞ sin ½kpðξ0 − ξ1Þ�
p �. Bounded x1 centroid oscil-

lations occur when the beamlet m ¼ 1 resides in focusing
regions (ðq=eÞ sin ½kpðξ0 − ξ1Þ� > 0), for which x1 oscil-
lates at k1 ¼ kβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðq=eÞ sin ½kpðξ0 − ξ1Þ�
p

. For m ¼ 2,
∂2x2=∂z2þk2βx2ðq=eÞðsin½kpðξ0−ξ2Þ�þsin½kpðξ1−ξ2Þ�Þ¼
w1k2βx1ccos½zkβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðq=eÞsin½kpðξ0−ξ1Þ�
p � where w1 ¼ sin

½kpðξ1 − ξ2Þ�. Bounded oscillations also require that x2
resides in focusing regions with ðq=eÞðsin ½kpðξ0 − ξ2Þ�þ
sin ½kpðξ1 − ξ2Þ�Þ > 0. In this case, the equation of motion
for x3 is a driven harmonic oscillator. The driving term
oscillates at k1 ¼ kβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðq=eÞ sin ½kpðξ0 − ξ1Þ�
p

, and the
natural frequency is k22 ¼ k2βðq=eÞðsin ½kpðξ0 − ξ2Þ�þ
sin ½kpðξ1 − ξ2Þ�Þ. Hence, ensuring k2 ≠ k1 avoids resonant
x2 oscillations and rapid growth. By extending this argument
to the following beamlets it can be recognized that avoiding
resonant centroid growth requires that every beamlet oscil-
lates at a different frequency. This is satisfied for fully

(a)

(b)

(c)

(d)

FIG. 1 (color online). (a) Numerical solutions for the centroid
evolution for a flattop bunch (black-solid thinner line) and at the
locations of a train of bunches (red-solid thicker line). The dashed
gray line shows the centroid solution for the train of bunches at
any ξ. (b) Corresponding bunch density profile (red-solid thicker
line), plasma density perturbations retrieved from a 3D PIC
simulation (blue-dashed line) and corresponding numerical
solution (black-thinner solid line) using Eq. (2c). (c) Numerical
solution for xc for a train of Dirac-delta-like bunches [with length
kpσz ¼ 0.1 and density nl ¼ n0=ðkpσzÞ] located at maximum
focusing field regions. The inset shows the relative distance
between beamlets. (d) Panels 1 and 2. Numerical (red-thicker
solid line) and analytical (blue-solid and dashed lines) solutions
for the centroid evolution of a collection of beamlets. The initial
centroid displacement is xc0 ¼ 8.93 × 10−8 ξ.
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self-modulated bunches in the linear regime, where each
beamlet resides in focusing regions and the amplitude of the
focusing field (and wave number) increases for each
beamlet. The natural frequency can also vary if the spacing
between bunches varies or if there is an energy chirp on the
beam (kβ ∝ 1=

ffiffiffi
γ

p
).

To illustrate hosing suppression, we present in Fig. 1(c)
numerical solutions for a case where short beamlets are in
regions of maximum focusing fields, as in a self-modulated
scenario. We use Eqs. (2) for very short bunches, which is
then equivalent to Eq. (3). Figure 1(c) demonstrates that
ðxc − xc0Þ=xc0 ≪ 1 for kβz ≫ 1, in agreement with the
results for the more realistic bunch train of Figs. 1(a)–1(b).
Figure 1(b) superimposes the position of each beamlet in
the wake it excites, showing that the bunch train considered
in Fig. 1(a) is in focusing regions.
Numerical solutions of Eq. (2) show that finding

separations Δξm between beamlets that ensure they reside
in maximum focusing fields is challenging as Δξm depends
on their relative position within the bunch train, and on their
length and density profile. Therefore, producing a train of
bunches in the conditions for HI suppression while making
a wake over large distances would be very challenging
experimentally. For example, the inset of Fig. 1(c) shows
how the optimal spacing varies for beamlets for one case.
Long bunches self-consistently evolve into this optimal con-
figuration through the SMI. This can be seen in Fig. 1(b),
which also shows that in this case linear wakes are
still excited during the nonlinear stage of the SMI. To
demonstrate this, we show in Fig. 1(b) that the numerical
solution to Eq. (2c) using the simulation n∥ and the
corresponding δnp=n0 retrieved from the simulation are
indistinguishable.
It is possible to obtain analytical expressions for xm in

self-modulated regimes if we simplify Eq. (3) by assuming
constant wl ¼ α and k2m ¼ αk2β

P
lnl. This approximation

corresponds to wakefields growing secularly along the
bunch and to each beamlet equally driving the oscillations
of following beamlets. Note that the actual value of α
depends on the exact density profile of each beamlet, for
which no analytical predictions are available. Under the
above assumptions we can replace the sums by integrals
whereby Eq. (3) becomes

�∂2

∂z2þαk2β

Z
ξ̄

∞
kpn∥ðξ0Þdξ0

�
xc¼αk2β

Z
ξ̄

−∞
kpxcðξ0Þn∥ðξ0Þdξ0;

(4)

where ξ̄ ¼ ξσz=Δξ is a new variable that runs only through
regions where n∥ ≠ 0. We can solve Eq. (4) assuming n∥ ¼
1 (i.e., the charge on each beamlet is constant) by differ-
entiating Eq. (4) once in ξ̄ and by solving the resulting
equation for ∂xc=∂ξ̄ using xc0 ¼ δHIξ̄ and ∂xc0=∂z ¼ 0
yielding

kpxc ¼
2δHI
αk2βz

2
½−1þ cosðNflatÞ þ Nflat sinðNflatÞ�; (5)

whereNflat ¼ kβz
ffiffiffiffiffiffiffiffiffiffi
αkpξ̄

q
. Equation (5) indicates thatkpxc ∝

δHI

ffiffiffiffiffiffiffiffiffiffi
αkpξ̄

q
=ðkβzÞ demonstrating HI damping after SMI

saturation for kβz ≫ 1. In panels 1 and 2 of Fig. 1(d)
we compare numerical solutions of Eq. (2) using n∥ from
Fig. 1(b) with Eq. (5) for wl ¼ 0.3 or wl ¼ 0.5 and with
constant n∥ which is the average of the actual distribution.
Figure 1(d) shows that the numerical solution for xc varies
within each beamlet because the betatron frequency is ξ
dependent within each bunch. The derivation of Eq. (5)
assumes that the betatron frequency is constant (i.e., at a
value of kβα1=2) and hence does not take this effect into
account. Nevertheless, there is agreement with the peaks of
the numerical solution for xc and the analytical solution for
kβz≲ 3. For kβz≳ 4 the agreement is worse because the
assumptionof a constantαbecomesprogressivelyworse.We
also note that the values for the weights wl vary between 0.8
and 0.2 from the front to the back of the bunch train.
Our analysis shows that hosing suppression occurs in the

linear regime because the betatron frequency of each bunch
varies along the train. In the nonlinear regime driven by
negatively charged bunches, the focusing fields are set by
the ion column density. Thus, all beamlets oscillate at the
same frequency, and hosing can still grow. Simulations
demonstrate that electron bunches with a correlated energy
spread could nevertheless be used to damp or suppress
hosing in this case because kβ ∝ 1=

ffiffiffi
γ

p
now varies along the

bunch. In addition, when the beamlets are not short when
compared with λp, as is often the case, the variation of the
accelerating field across each bunch could also contribute
to damp the HI. For positively charged bunches, most of the
bunch defocuses during the growth of the SMI in the
blowout regime. Thus, stable propagation for positively
charged drivers requires wakefields in the linear regime.
The HI suppression mechanisms mentioned above are
similar to Balakin-Novokharsky-Smirnov (BNS) damping
in rf linear accelerators [19].
We can estimate the bunch density after SMI satu-

ration considering nb0r2b0 ¼ nbðsatÞr2bðsatÞ, where nb=ðsatÞ
and rbðsatÞ refer to the matched bunch density and radius
after SMI saturation [20]. By assuming that the wake
grows secularly along the self-modulated bunch, nbðsatÞ≃
nb0r2b0½ðγk2p=2ϵ2NÞðnb0=n0Þðme=mbÞðσz=λpÞ�1=2, where
ϵN is the normalized emittance. For a PDPWFA with
nb0=n0≃10−2, σz≃10cm, n0≃1014 cm−3, rb0 ≃ 200 μm,
and ϵN ≃ 3 mm mrad, nbðsatÞ=n0 ¼ 0.04. Furthermore,
PDPWFA simulations show that emittance can increase by
an order of magnitude, such that nbðsatÞ=n0 becomes even
lower. Thus, the wakefield will still be in the linear regime in
experiments, andhosing canbe stabilized after SMI saturation.
Stable wake excitation in a SM PWFA requires SMI

saturation before bunch breakup due to the HI. This
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condition can be fulfilled when the SMI seed is larger than
for HI; i.e., the initial focusing force that seeds hosing
(hW⊥;HIi) needs to be smaller than that seeding self-
modulation (hW⊥;SMIi). This is the same as having the
seed for xw being smaller than the seed for δnp=n0. Among
several SMI seeding mechanisms [21–23] we consider
seeding by bunches with short rise times [24] for which
hW⊥;SMIi ∝ k2βkprb0. Beam tilts that seed hosing lead to
hW⊥;HIi ¼ k2βkpσzδHI. Hence hW⊥;SMIi=hW⊥;HIi ≳ 1 holds
as long as δHI ≲ rb=σz (xc0 ¼ δHIξ), consistent with
Ref. [23]. Stable propagation then occurs for all beamlets
whose centroid initially resides within the bunch radius, at
the bunch front.
A set of 3D PIC simulations was performed with the

numerical code OSIRIS [14]. See the Supplemental
Material [25] for the simulation parameters. Figure 2(a)
illustrates the transition between the linear stage of hosing
to a nonlinear coupling between the SMI and the HI. In this
case, even with a very small seed for the HI
(kpδHI ¼ 0.001) and essentially no SMI seeding, the HI
strongly breaks up the bunch density after a short propa-
gation distance (kβz ¼ 3.5) and before the SMI can grow.
Figure 2(b) shows results from the half bunch. Even with an
initial HI seed 10 times larger than in the case of Fig. 2(a)
(kpδHI ¼ 0.01), the bunch is free of the HI. The beam
becomes fully self-modulated and then stably propagates
over a longer distance into the plasma (kβz ¼ 6.2). In this
case, existing hosing theory for flat bunches significantly
overestimates jxcj [26].
Figures 3(a)–3(b) show that hosing suppression also

occurs for flattop bunches with different initial tilts and
with nb=n0 ¼ 0.01 so long as the wake is still in the linear
regime after saturation. Figure 3(a) shows results from a
simulation in which the tilt was small enough so that
centroid variation across the entire beam was less than the
initial spot size, i.e., where xc0 ¼ δHIσz ¼ 0.6rb < rb. In
this case all the self-modulated beamlets propagate stably.
The y direction focusing force (Wy ¼ Ey − Bz) increases
along the bunch, resulting in betatron frequency detuning
among self-modulated beamlets, which leads to HI

suppression and which is consistent with Eqs. (3) and
(4). The simulation results from Fig. 1(b) correspond to on-
axis lineouts from Fig. 3(a). In Fig. 3(b), results for a beam
with a larger tilt are shown. In this case xc0 ¼ δHIσz ¼
3rb > rb and only beamlets satisfying ξ≲ rb=δHI
(xc0 < rb) propagate stably (i.e., those with kpξ≳ 30), in
agreement with analytical scalings. Also in agreement with
theory, additional simulations (not shown) also confirm
these conclusions for positron bunches.
Figures 3(c)–3(d) illustrate the breakup of the same

bunches as used in Figs. 3(a)–3(b), but with nb=n0 ¼ 0.5
such that the wakefields driven by the SMI eventually reach
the nonlinear blowout regime. As the bunch self-modulates,
the amplitude of the plasma focusing force becomes
constant throughout the entire bunch train and the ampli-
tude is the same for each bunch [solid and dashed lines in
Fig. 3(c)]. As discussed earlier this prevents the suppres-
sion of the HI and the beam is seen to eventually break apart
due to resonant HI growth [Fig. 3(d)]. Other wakefield
saturation mechanisms (e.g., due to fine scale mixing of
electron trajectories [27]) could also lead to HI growth.
In conclusion, we have shown that the hosing instability

of long particle beams can be suppressed and stabilized if the
beam first becomes fully self-modulated and the resulting
wake and density perturbations remain in the linear regime.
This requires that the seed for the SMI is larger than for the
HI. Fully self-consistent PIC simulations show that for long
particle beams with sharp rise times the beam can propagate
for long distances exciting a wakefield that could be used to
accelerate externally injected particles. This suppression
mechanism is analogous to Balakin-Novokharsky-Smirnov
damping in conventional linear accelerators. These results
should also apply to a train of laser pulses [28] and this will
be addressed in future work.
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FIG. 2 (color online). OSIRIS simulation results: Bunch density
isosurfaces (color-yellow and green; black and white-lighter and
darker gray). Projections show electron bunch (color-blue, black
andwhite-darkergray) andplasmadensity (lightergray). (a)Bunch
with smooth temporal profile. (b) Bunch with sharp-rise long-fall
current profile for SMI seeding. The dashed lines show HI
theoretical predictions for non-self-modulated bunches.

(a)

(b)

(c)

(d)

FIG. 3 (color online). OSIRIS simulation results of the propa-
gation of the long electron bunch (color-blue red, black and
white-darker gray) in a plasma (lighter gray) in the linear [(a) and
(b)] and nonlinear [(c) and (d)] wakefield regime. The shape of
the initial bunch profile is shown by the short dashed lines. The
initial bunch radius rb0 is also indicated. Plasma focusing force
Ey − Bz (solid lines) and envelope of Ey − Bz (long dashed lines)
are also illustrated.
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