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Several types of sensors used in physics are based on the detection of splittings of resonant frequencies
or energy levels. We propose here to operate such sensors at so-called exceptional points, which are
degeneracies in open wave and quantum systems where at least two resonant frequencies or energy levels
and the corresponding eigenstates coalesce. We argue that this has great potential for enhanced sensitivity
provided that one is able to measure both the frequency splitting as well as the linewidth splitting. We apply
this concept to a microcavity sensor for single-particle detection. An analytical theory and numerical
simulations prove a more than threefold enhanced sensitivity. We discuss the possibility to resolve
individual linewidths using active optical microcavities.
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A degeneracy of resonant frequencies (energy levels) can
serve as a basic element of a sensor because a small
perturbation can lift the degeneracy and can therefore lead
to a detectable splitting of these frequencies. This simple
principle is used in modern sensor devices, such as
microcavity sensors for single or few particle detection
[1–3], optical gyroscopes [4,5], weak magnetic field
sensors [6], nanomechanical mass sensors [7], and bending
curvature sensors [8]. In all of these examples, the
perturbation acts on a conventional twofold degeneracy
known from the quantum mechanics of conservative
systems. A point in parameter space at which such a
degeneracy is located is called the diabolic point (DP) [9].
Two properties are characteristic of a DP. First, only the
energy levels degenerate but not the associated eigenstates.
The eigenstates can always be chosen to be orthogonal to
each other. Second, a perturbation of strength ε leads to
energy shifts and splitting proportional to ε.
Most systems in physics are, however, open systems. For

example, the optical modes (the optical analogue of energy
eigenstates) in microcavities are subjected to losses due to
absorption and radiation. This leads to decaying modes and
finite spectral linewidths at resonant frequencies. These
features can often be well described by a non-Hermitian
effective Hamiltonian [10]. In such open systems there is,
besides the DPs, another type of degeneracy called the
exceptional point (EP). The behavior at an EP is more
drastic than at a DP as at this point in parameter space not
only the eigenvalues (at least two) but also the correspond-
ing eigenstates coalesce [11–14]. The physical existence of
EPs has been demonstrated by experiments on a number of
systems, e.g., microwave cavities [15–17], optical micro-
cavities [18,19], and coupled atom-cavity systems [20].
Moreover, theoretical studies suggest that EPs also play a
role in other physical systems, such as hydrogen atoms in

crossed magnetic and electric fields [21], photonic lattices
[22], and nonuniformly pumped lasers [23].
If an EP for two coalescing levels is subjected to a

perturbation of strength ε then the resulting energy splitting
is typically proportional to

ffiffiffi
ε

p
[11,24]. In other words, for

sufficiently small ε the splitting is enhanced if compared to
a DP even though exactly the same perturbation is applied.
It is precisely this basic characteristic of EPs that we here
exploit for sensor applications. As an example, we discuss a
microcavity sensor for label-free, single-particle detection.
For such sensors one often uses whispering-gallery mode
(WGM) optical microcavities like microdisks [25–27],
microspheres [28–32], and microtoroids [1,19,33]. When
a target particle comes close to the boundary of the
microcavity then the evanescent coupling leads to light
backscattering of clockwise (CW) and counterclockwise
(CCW) propagating modes. This coupling of modes results
in frequency shifts and splitting of WGM pairs. Measuring
the frequency splitting rather than a frequency shift is more
robust against noise from the probe laser and environmental
temperature fluctuations [1,34].
The setup that we study here is motivated by a recent

experiment on amicrotoroidwith two nanofiber tips placed in
the evanescent field of the modes [19]. These two tips were
used to remove an unwanted frequency splitting which
originated from fabrication imperfections. Based on spectral
dataonly, itwasclaimedthat thedegeneracycreatedinthisway
is an EP. This was confirmed by a study of the spatial and
spectral properties ofmodes in a similar system: two scatterers
close to a microdisk [35]. However, none of these two papers
addressed theutility ofEPs for sensor applications.The aimof
thisLetter is topresenta theoreticalstudywhichreveals that the
sensitivity of the microcavity operating at an EP can be
significantly enhanced provided that frequency and linewidth
splittings are both experimentally accessible.
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Our microcavity sensor is the two-particle-microdisk
system introduced in Ref. [35]. Together with the target
nanoparticle, there are in total three particles of radii rj
(j ¼ 1; 2; 3) in the periphery of the microdisk of radius R as
illustrated in Fig. 1. Note that the precise shape is not
important in the regime of Rayleigh scattering where
the wavelength λ is much larger than the size of the
scatterers. The position of each particle’s center is ðxj; yjÞ ¼
ðRþ rj þ djÞðcos βj; sin βjÞ.
We solve Maxwell’s equations in two dimensions using

the effective index approximation. The solutions with time
dependence e−iωt are the optical modes. Sommerfeld out-
going wave conditions are applied at infinity, leading to
quasibound states with complex frequencies ω in the lower
half-plane. For convenience, we use a dimensionless
frequency Ω ¼ ðω=cÞR where c is the speed of light in
vacuum. The real part is the conventional frequency
whereas the imaginary part determines the linewidth
(decay rate) γ ¼ −2ImΩ and the quality factor Q ¼
−ReΩ=½2ImΩ� of the given mode.
In Ref. [35] an effective Hamiltonian has been intro-

duced that describes this nanoparticles-microdisk system
within a two-mode approximation and slowly varying
envelope approximation in the time domain [36]. With
the azimuthal mode number m ∈ N and the frequency Ωð0Þ
of the unperturbed WGMs, the total effective Hamiltonian
for the microdisk with N nanoparticles in the traveling-
wave basis (CCW,CW) is given by the 2 × 2 matrix

HðNÞ ¼
�
ΩðNÞ AðNÞ

BðNÞ ΩðNÞ

�
(1)

with

ΩðNÞ ¼ Ωð0Þ þ
XN
j¼1

ðVj þ UjÞ; (2)

AðNÞ ¼
XN
j¼1

ðVj −UjÞe−i2mβj ; (3)

BðNÞ ¼
XN
j¼1

ðVj −UjÞei2mβj : (4)

The quantities 2Vj and 2Uj are given by the complex
frequency shifts for positive- and negative-parity modes
introduced by particle j alone. These quantities can be
calculated for the single-particle-microdisk system either
fully numerically, using, e.g., the boundary element method
(BEM) [37], the finite-difference time-domain method
[38], the finite-difference frequency-domain method [39],
or approximately using the Green’s function approach for
point scatterers [40] (Uj ¼ 0). Note that the matrix (1) is
not Hermitian since Vj, Uj, and Ωð0Þ are complex numbers
reflecting the presence of losses.
An important result of Ref. [35] is that in general

jAðNÞj ≠ jBðNÞj; i.e., the backscattering between CW and
CCW traveling waves is asymmetric; see also
Refs. [41,42]. This asymmetric backscattering has interest-
ing consequences [43,44], such as the appearance of pairs
of optical modes, where in each pair (i) the two modes are
significantly nonorthogonal, (ii) each of the two modes has
a finite orbital angular momentum, and (iii) both modes
mainly copropagate. In the case of full asymmetry,
AðNÞ ¼ 0 or BðNÞ ¼ 0, the modes coalesce at an EP.
In our setup, the first two particles implement the EP and

the third is disturbing it; i.e., the microcavity sensor
together with the target particle are described by

H ¼ H0 þH1 (5)

with H ¼ Hð3Þ and H0 ¼ Hð2Þ from Eq. (1), and

H1 ¼
�

V þU ðV −UÞe−i2mβ

ðV −UÞei2mβ V þU

�
(6)

using the short-hand notation V ¼ V3, U ¼ U3, β ¼ β3.
We require that the unperturbed sensor, described by H0,
has zero frequency splitting. This can be achieved either by
using a DP or an EP. A DP is here given by Bð2Þ ¼ 0 and
Að2Þ ¼ 0, i.e., without any backscattering between CW and
CCW traveling waves. An EP results for Bð2Þ ¼ 0 or
Að2Þ ¼ 0. There is no backscattering into the CW (or
CCW) direction even though there is backscattering into
the opposite direction. The EP realized for the microtoroid
with two nanofiber tips [19] is of such a kind.
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FIG. 1. Microdisk of refractive index n and radius R with three
nanoparticles of refractive index nj at distance dj and at
azimuthal position βj (β1 ¼ 0). The two gray dots mark the
particles that implement the exceptional point and the small black
one marks the target nanoparticle.
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A straightforward calculation shows that the disturbance
due to the target particle, H1, induces for the DP the
complex frequency splitting

ΔΩDP ¼ 2ðV − UÞ: (7)

The real part of ΔΩDP is the conventional frequency
splitting observed for instance in Ref. [1]. The imaginary
part corresponds to a small linewidth splitting. In the case
of the EP [with Bð2Þ ¼ 0 and Að2Þ ≠ 0 from Eq. (3)],
however, one gets

ΔΩEP ¼ ΔΩDP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Að2Þei2mβ

V −U

s
: (8)

For the opposite case Að2Þ ¼ 0, the quantities Að2Þ and β
have to be replaced in Eq. (8) by Bð2Þ and −β, respectively.
If the square root in Eq. (8) is larger than unity then the
frequency splitting at the EP is larger than the one at the DP
even though in both cases the perturbationH1 is exactly the
same. The intuitive explanation is that the intrinsic (and
fully asymmetric) backscattering of strength jAð2Þj does not
lead to a splitting as long as there is no target particle, but in
the presence of a target particle it is able to give a
significant contribution to the splitting.
If the intrinsic backscattering is much larger than the

backscattering at the target particle, jAð2Þj ≫ jV − Uj,
Eq. (8) simplifies to

ΔΩEP ¼ ΔΩDPeimβ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Að2Þ

V −U

s
: (9)

Here, the absolute value of the complex frequency splitting
jΔΩEPj ≫ jΔΩDPj is independent from the azimuthal
position of the target particle, β. But the corresponding
real and imaginary parts do depend on β. It is therefore
necessary to measure both the frequency splitting ReðΔΩÞ
and the linewidth splitting −2ImðΔΩÞ. This can be done as
recent experiments show [1,45].
The proposed scheme works also for more than one

target particle provided that the total perturbation remains
small compared to the strength of the intrinsic backscatter-
ing. More precisely,

jAð2Þj ≫
����XN
j¼3

ðVj −UjÞe−i2mβj

����: (10)

In such a case jΔΩEPj does depend on the relative azimuthal
positions of the target particles, but this is also true for the
conventional splitting jΔΩDPj; see, e.g., Refs. [19,35].
In the following, we compare the analytical results in

Eqs. (8) and (9) to full numerical simulations for transverse
magnetic (TM) polarization using the BEM. For the
microcavity sensor consisting of the disk and the first

two particles we use n ¼ n1 ¼ n2 ¼ 2 (material losses
are ignored), d1=R ¼ 0.01, d2=R ¼ 0.02, r1=R ¼ 0.043,
r2=R ¼ 0.048 378, β1 ¼ 0, and β2 ¼ 1.084 681 32 in
radian. The radius R of the disk does not have to be
specified if the dimensionless frequency Ω ¼ ðω=cÞR ¼
2πðR=λÞ is used. For example, with Ω ≈ 10 and
λ ≈ 1 μm we have R ≈ 1.6 μm, d1 ≈ 16 nm, d2 ≈ 32 nm,
r1 ≈ 68 nm, and r2 ≈ 77 nm. Note that this set of param-
eters serves as an example. There is no principle limitation
in microdisk size, particle size, wavelength, or refractive
indices.
Figure 2 shows the pair of modes corresponding to

unperturbed modes with azimuthal mode number m ¼ 16
and the lowest radial mode number. This pair is close to an
EP withΩ ≈ 9.8780 − i0.002 43. This EP is the degeneracy
that we use for our detection scheme. It can be seen that the
modes look very similar. This is consistent with the
coalescence of the modes exactly at the EP. Moreover,
no clear nodal line structure in the azimuthal direction is
visible in Fig. 2, reflecting the fact that the modes near such
an EP are not standing waves but mainly traveling
waves [35].
For the target particle with azimuthal position β ¼ β3 we

fix d3=R ¼ 0.015, r3=R ¼ 0.01, and n3 ¼ 1.5. Figure 3
demonstrates good agreement between the full numerical
results and analytical results according to Eqs. (8) and (9)
(Vj, Uj are determined beforehand using the BEM) for the
frequency splitting ΔΩ ¼ Ωþ −Ω−. For convenience, the
splitting is normalized by the conventional splitting jΔΩDPj
occurring at a DP. It can be observed in Fig. 3(a) that jΔΩj
is (i) approximately independent of the particle’s position β
and (ii) that it is enhanced by a factor of 3 to 3.5 if
compared to jΔΩDPj. Note that, according to Eq. (9), there
is no principle limitation of the enhancement factor. In
agreement with Eq. (9), Figs. 3(b) and 3(c) show that the
real and the imaginary part of the frequency splitting
undergo roughly a harmonic oscillation with period
Δβ ¼ 2π=m ≈ 0.4. The small discrepancies between the

FIG. 2 (color online). Computed near-field intensity patterns of
a mode pair in the microcavity sensor (without target particle)
close to an exceptional point. (a) Dimensionless frequency
Ωþ ¼ 9.878 070 − i0.002 427 and quality factor Qþ ≈ 2035.
(b) Ω− ¼ 9.878 033 − i0.002 428 and Q− ≈ 2034.
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full numerical results and the analytical results in Fig. 3 are
traced back to the two-mode approximation [35].
The mode pair in the microcavity sensor with a target

particle [inset of Fig. 3(a)] exhibits a visible nodal line
structure in contrast to the case without the target particle in
Fig. 2. This is because the target particle drives the system
slightly away from the EP (nonzero frequency splitting)
and thereby introduces a standing-wave component into the
mode structure.
It should be mentioned that there are two technical

difficulties with our proposal. The first one is related to the
particular geometry chosen in our example. Because of the
two nanoparticles which implement the EP, the individual
linewidths γ� ¼ −2ImΩ� are increased to≈7jΔΩj, making
it difficult to resolve the frequency splitting in experiments.
Fortunately, the problem of resolving overlapping peaks
has been solved in recent experiments by (i) interferometric
detection of frequency splittings [46], (ii) the application of
the harmonic inversion technique [47], and (iii) linewidth
reduction by optical gain in an active microcavity [2,48].
We confirm the later approach by simulating optical gain in
the microdisk using a negative imaginary part of the
refractive index n. Figure 4 shows that the absolute value
of the frequency splitting stays nearly constant whereas the
individual linewidths of the two involved modes decay
linearly with −Imn. For −Im n > 0.000 43, the linewidths
are smaller than the frequency splitting and therefore the

latter can be resolved. Hence, using a microlaser is a
promising approach for our purpose.
The second technical difficulty is that there are certain

values of β at which the splitting ReðΔΩÞ vanishes, for
example, at β ≈ 4 as shown in Fig. 3(b). Near these values
of β it is difficult to resolve the two peaks using a
conventional Lorentzian curve fit, even though the line-
width splitting j2ImðΔΩÞj is maximal. However, the
harmonic inversion technique has proven to work reliably
also in such extreme cases [47]. Hence, these technical
difficulties can be overcome.
The discussed mechanism for microcavity sensors is not

restricted to the geometry, size, wavelength, and refractive
indices studied in this Letter. For instance, the EP could
also be implemented by introducing holes or defects (see,
e.g., Refs. [40,49]) into the disk. This would be advanta-
geous as target particles can dock uniformly along the disk
boundary. Another possibility would be to use a deformed
microdisk cavity at an EP [18]. Moreover, other whisper-
ing-gallery cavities such as microrings, microtoroids, and
microspheres can be adapted to our scheme.
To further stress the broad applicability of our idea we

briefly address the topical field of nanomechanical mass
sensing. One approach here is to measure the change of
mechanical frequencies of a micro- or nanocantilever of
mass M due to the attachment of a target mass ΔM ≪ M
[7]. Sensitivity can be enhanced by using two identical
coupled cantilevers [50], but in both cases the sensitivity is
proportional to ε ¼ ΔM=M. Avoided frequency crossings
based on coupling of nanomechanical modes have been
experimentally demonstrated [51]. Such an avoided cross-
ing can be converted to an EP by adjusting losses. For the
coupled cantilever problem, approximated by two coupled
harmonic oscillators [50], the appearance of EPs has been
explicitly shown for nonidentical damped oscillators [14].
As for identical oscillators the perturbation by the target
mass is proportional to ε. At the EP this induces a
frequency splitting of order

ffiffiffi
ε

p
[11] which can be exploited

for ultrasensitive mass sensing.
In summary, we proposed to use exceptional points to

improve the performance of sensors based on the detection

FIG. 3 (color online). Frequency splitting ΔΩ normalized by
the conventional splitting jΔΩDPj vs target particle position β in
radian. The black solid curve is the full numerical solution, the
blue dash-dotted curve is the result of Eq. (8) and the red dashed
line is obtained from Eq. (9). (a) Absolute value of ΔΩ. A more
than threefold enhancement of the sensitivity is observed. Inset:
near-field intensity patterns of the mode pair for the target particle
(arrow) at β ¼ 4. (b) Real and (c) imaginary part of ΔΩ.

FIG. 4 (color online). Full numerical solution of the dimension-
less frequency splitting jΔΩj (black solid curve) and individual
linewidths γ� ¼ −2ImΩ� (blue dash-dotted line and red dashed
line) of the mode pair vs imaginary part of the refractive index;
β ¼ 3.9.
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of frequency or energy splittings. It is demonstrated that
the sensitivity of a microcavity sensor for single-particle
detection can be enhanced provided that both the frequency
splitting and the linewidth splitting can be measured. We
believe that our approach not only helps to improve the
sensitivity of detection schemes but also fosters the
fascinating research on the physics of exceptional points.
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