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Cavity optomechanics is showing promise for studying quantum mechanics in large systems. However,
the smallness of the radiation-pressure coupling is a serious hindrance. Here we show how the charge
tuning of the Josephson inductance in a single-Cooper-pair transistor can be exploited to arrange a strong
radiation-pressure-type coupling g0 between mechanical and microwave resonators. In a certain limit of
parameters, such a coupling can also be seen as a qubit-mediated coupling of two resonators. We show that
this scheme allows reaching extremely high g0. Contrary to the recent proposals for exploiting the
nonlinearity of a large radiation-pressure coupling, the main nonlinearity in this setup originates from a
cross-Kerr type of coupling between the resonators, where the cavity refractive index depends on the
phonon number. The presence of this coupling will allow accessing the individual phonon numbers via the
measurement of the cavity.
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Recent experiments on cavity optomechanical systems
have shown how the parametric coupling between an
electromagnetic (either optical or microwave) cavity and
a mechanically vibrating resonator can be exploited to take
the latter to its quantum mechanical ground state [1,2].
Such schemes rely on amplifying the intrinsically weak
radiation-pressure coupling g0 between the two systems via
a strong pumping of the cavity, making the effective
coupling between the systems linear. However, linearly
coupled oscillators constitute a linear system lying in the
correspondence limit, where quantum effects can be seen
only in signal fluctuations [3,4]. Therefore, the emphasis of
this research has shifted to the regime of strong radiation-
pressure coupling. There are many recent theoretical
proposals of the ensuing dynamics of the system in the
strong coupling regime [5–17], but reaching this regime in
any system other than cold atom gases [18,19] in practice is
challenging [20,21]. The ultimate aim would be to make the
bare radiation-pressure coupling of the order either of
the frequency of the mechanical resonator ωm or at least
of the linewidth κ of the cavity.
In this Letter we propose to use the nonlinearity of the

Josephson effect to enhance the coupling between the
vibrations and the electromagnetic field. The scheme
involves a tripartite system consisting of a Josephson
junction qubit, a microwave cavity, and a micromechanical
resonator. Although previous works exist on coupling a
qubit to both a cavity and a mechanical system [22–25], our
work is, to our knowledge, the first where the system is
considered as an optomechanical platform.
For representative superconducting circuit parameters

[26], we find that the radiation-pressure coupling can be

amplified by a large factor. We first show this by a simple
Josephson inductance picture and then detail a Schrieffer-
Wolff–type approach where the effect is obtained as a
systematic perturbation theory on the tripartite quantum
system. Using this approach we also discuss the possible
added mechanical and cavity damping due to the hybridi-
zation of the different parts of the system. Finally, we
continue the perturbation theory to show that the nonlinear
frequency shifts in this system are not primarily caused by
the radiation-pressure coupling, but rather a cross-Kerr-
type coupling.
Radiation pressure from Josephson inductance.—Here

we take advantage of a charge qubit [27,28], that is, a
system of two small-capacitance Josephson junctions. This
system is also known as a single-Cooper-pair transistor
(SCPT), which is the picture that we first adopt. It behaves
as a tunable inductance dependent on the mechanical
displacement.
As marked by the dashed box in Fig. 1, the SCPT has

junction capacitances C1, C2 and gate capacitance Cg0,
which give the charging energy of a single electron
EC ¼ e2=½2ðCg0 þ C1 þ C2Þ�. The junctions have
Josephson energies EJi ≲ EC. Because of Coulomb block-
ade, the energy difference of having zero or one Cooper
pair on the island can be tuned by the gate charge
ng0 ¼ VgCg0=2e. Moreover, Josephson tunneling mixes
charge states into coherent superpositions of Cooper pair
states [29].
In the most relevant limit EC ≫ EJi, so that we con-

centrate on the two charge states closest to ng0, defining
δng0 ¼ ng0 − intðng0Þ ∈ ½0; 1� as the deviation of ng0 from
the lower integer value. The Hamiltonian is [30]
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HSCPT ¼
X3
j¼1

Bjσj=2; (1)

where B1 ¼ −ðEJ1 þ EJ2Þ cosðϕ=2Þ, B2 ¼ ðEJ1 −
EJ2Þ sinðϕ=2Þ and B3 ¼ 4ECð1 − 2δng0Þ are the effective
magnetic fields, σj are Pauli matrices acting on the space
spanned by the Cooper-pair charge states jintðngÞi and
jintðngÞ þ 1i, and ϕ is the phase difference of the super-
conducting order parameters across the junction. The

ground state energy is ESCPT ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiP

jB
2
j

q
=2≡ −B=2.

Placing a Josephson junction inside an electromagnetic
resonator (cavity) affects its total inductance via the
Josephson inductance LJ ¼ ℏ2=ð2eÞ2½∂2

ϕEðϕÞ�−1, where
EðϕÞ is the energy of the junction. Using a SCPT instead
of a single junction allows for controlling Josephson
inductance via the modulation of the gate charge [26].
Here we consider what happens when the gate capacitor
can vibrate, modulating the movable part of the gate
capacitance Cgðx; tÞ (see Fig. 1). The total gate charge is
ng ¼ ng0 þ xVg∂xCg, where x is the amplitude of mechani-
cal vibrations. Along the dependence of the energy of the
SCPT on both control parameters ng and ϕ, the mechanical
vibrations modulate the cavity eigenfrequency, and the
resulting coupling is of the radiation-pressure type.
The above picture allows us to estimate the size of the

radiation-pressure coupling. The cavity eigenfrequency
ωc ¼ ½ðLjjLJÞC�−1=2 consists of the geometric and the
Josephson inductances L and LJ, respectively. The radia-
tion-pressure coupling is, thus,

g0 ≡ xZP
∂ωc

∂x ¼ ωcxZP∂xCgVg

4e
LLJ

Lþ LJ
∂ngL

−1
J : (2)

Here xZP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mωmÞ

p
is the zero-point motion

amplitude for a mechanical resonator with effective mass
m and angular frequency ωm. Let us compare this with the
coupling in the setup where the capacitance of the cavity is
directly modulated [1,4,31]. In that case, gd0 ¼ xZP∂xCg=
ð2CÞωc. The ratio between these two couplings is

g0
gd0

¼ CVg

2e
LLJ

Lþ LJ
∂ngL

−1
J : (3)

Choosing L ≈ LJ and noting that the factor LJ∂ngL
−1
J can

be of the order of unity (see below), the optomechanical
coupling can be amplified in this setting by the factor
CVg=ð2eÞ, about 4–6 orders of magnitude for typical
experimental parameters [26,32].
It is now straightforward to obtain the radiation-pressure

coupling from Eq. (3). For symmetric junctions, EJ ¼
EJ1 ¼ EJ2, we get

g0
gd0

¼ CVg

2e

8E2
CE

2
Jlð1 − 2δng0Þ

ð4 ~E2
C þ E2

JÞð4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
J þ 4 ~E2

C

q
þ E2

JlÞ
; (4)

where ~EC ¼ ECð1 − 2δng0Þ and l ¼ Lð2eÞ2=ℏ2. We plot g0
versus δng0 in Fig. 2. The two-state approximation is
generally valid for EC ≳ EJ as long as ng0 is not too close
to an integer. For low EJ=EC, g0 contains a peak of width
∼EJ=EC with a maximum somewhat below the charge
degeneracy point δng0 ¼ 1=2. For l ¼ 1=EJ, the maximum
resides at δng0 ≈ 1=2 − 0.18EJ=EC and is maxδng0g0≈
0.32gd0CVg=ð2eÞEC=EJ. The largest g0 is thus obtained
in the extreme charge qubit limit EC ≫ EJ, but because the
range of gate charge values where this maximum is
obtained is proportional to EJ=EC, in practice it is
preferable to choose EJ not too far from EC to prevent
gate charge fluctuations from masking the effect.
To make a numerical estimate of the resulting radiation-

pressure coupling, let us choose ð2eÞ2L=ℏ2 ¼ EJ ¼ EC=2.
For some representative values C ¼ 50 fF, Vg ¼ 10 V, we
would get g0=gd0 ≈ 106. With the typical direct radiation-
pressure coupling gd0=ð2πÞ ∼ 10 Hz [33], we would hence
get g0=ð2πÞ ∼ 10 MHz, which is already of the order of
typical ωm and 2 orders of magnitude larger than a typical

FIG. 1. Microwave optomechanical circuit considered here.
The SCPT part is marked with a dashed box. The mechanical
resonator couples via a time-dependent capacitance Cg½xðtÞ�.
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FIG. 2 (color online). Radiation-pressure coupling g0 versus
gate charge δng0 for the case of equal Josephson couplings
(EJ1 ¼ EJ2), at flux Φ ¼ 0 and for three different ratios EJ=EC ¼
0.05 (blue), 0.2 (red), and 1 (black), also denoted in the figure.
The inductance L ¼ 20ℏ2=ð4e2ECÞ in each curve. Solid lines
show the results from the numerically obtained SCPT spectrum
beyond the two-charge state restriction in Eq. (1), whereas the
dashed lines are plotted from Eq. (4).
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Al cavity linewidth κ [1] below 100 mK. However, in
practice the linewidths are affected by the charge noise of
the qubit (see below).
In the presence of a flux Φ through the cavity loop, the

average phase ϕa ¼ hϕi is the phase that minimizes the
total energy [34],

ℏ2

8e2L

�
2eΦ
ℏ

− ϕ

�
2

þ ESCPTðϕ; ng0Þ: (5)

For a vanishing flux, ϕa ¼ 0. It is then possible to tune the
radiation-pressure coupling with the flux; see Fig. 3.
Interestingly, such a flux tuning is stronger for smaller
EJ, but the region of gate charges where g0 is appreciable is
again limited to a range proportional to EJ=EC.
Another way to see why the coupling is boosted is

because of the qubit nonlinearity. A mechanical resonator
can be coupled to a linear cavity (not to a qubit as in the
present work) by means of a voltage bias [35]. This
coupling has a magnitude comparable to g0. This coupling,
however, is linear, and has few consequences between two
linear resonators. Replacing the cavity by a qubit, however,
turns the linear coupling into a longitudinal coupling,
which has a strong influence on the energies.
Schrieffer-Wolff approach.—The Josephson inductance

approach provides an intuitive picture of the physics.
However, for a more rigorous treatment, we start from
the general tripartite Hamiltonian and derive the optome-
chanical coupling by using the Schrieffer-Wolff trans-
formation [36]. It consists of a unitary transformation
which uncouples the high- and the low-energy states,
leading to the definition of an effective low-energy
Hamiltonian. Here, the high-energy states are represented
by the qubit states while the low-energy ones are repre-
sented by cavity and mechanical oscillator modes. The
ensuing effective low-energy Hamiltonian is thus described
in terms of effective cavity and mechanical oscillator
modes. Note that both this and the above Josephson

inductance approach are valid only in the dispersive limit,
where ℏωc=m ≪ jBj.
We express the electromagnetic energies of the circuit in

Fig. 1 in terms of the phases ϕ and ϕI with conjugate
charges 2en and 2enI (n and nI denote the number of
Cooper pairs and I points to the SCPT island). Then we use
the fact that eiϕI is a ladder operator for charge nI [29],
assume that changes of ϕ with respect to ϕa are small
compared to 2π (in the opposite limit the dynamics of the
system is quite complicated, see for example Ref. [37]), and
define ϕ − ϕa ¼ ϕ0ðc† þ cÞ with the conjugate variable
n ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð8e2Z0Þ

p
ðc† − cÞ. Here, Z0 ¼

ffiffiffiffiffiffiffiffiffi
L=C

p
and the

phase zero-point fluctuation is ϕ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2Z0=ℏ

p
. We then

write the resulting Hamiltonian for the system in the charge
basis as above. With a similar quantization of the mechani-
cal part of the Hamiltonian, we get (see detailed derivation
in Ref. [38])

H ¼ HSCPT þ ℏω0
cc†cþ ℏω0

ma†aþ gmσ3ða† þ aÞ
þ ðgq1σ1 þ gq2σ2Þðc† þ cÞ2
þ ðgc1σ1 þ gc2σ2Þðc† þ cÞ: (6)

Here ω0
c ¼ ðLCÞ−1=2 and ω0

m are the eigenfrequency of the
bare LC oscillator and of the bare mechanics, respectively,
Bj are as above, and

gm ¼ −
4ECxZP∂xCgVg

2e
; (7a)

gq1 ¼
e2Z0

8ℏ
ðEJ1 þ EJ2Þ cosðϕa=2Þ; (7b)

gq2 ¼
e2Z0

8ℏ
ðEJ2 − EJ1Þ sinðϕa=2Þ; (7c)

gc1 ¼
ffiffiffiffiffiffiffiffiffiffi
e2Z0

8ℏ

r
ðEJ1 þ EJ2Þ sinðϕa=2Þ; (7d)

gc2 ¼
ffiffiffiffiffiffiffiffiffiffi
e2Z0

8ℏ

r
ðEJ1 − EJ2Þ cosðϕa=2Þ: (7e)

The system is thus composed of two resonators with
frequencies ω0

c and ω0
m coupled to a common qubit. We

note that the order of magnitude of the cavity couplings
satisfies gqj ∼ g2cj=EJ ≫ gm. Below we limit ourselves to
the case of a symmetric system EJ1 ¼ EJ2, in which case
B2 ¼ gq2 ¼ gc2 ¼ 0. The full results are given in Ref. [38].
The full Schrieffer-Wolff transformation diagonalizing

the qubit part of the system is quite complicated. However,
in the dispersive limit ℏωc;m ≪ jBj, and where all cou-
plings are smaller than the difference jBj − ℏωc;m, it is
enough to diagonalize the qubit treating the oscillator
coordinates as scalars. Assuming that this effective qubit
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FIG. 3 (color online). Radiation-pressure coupling g0 versus
flux bias for a few values of the gate charge indicated in the plot
for EJ1 ¼ EJ2 ¼ 0.2EC and L ¼ 20ℏ2=ð4e2ECÞ.
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stays in its ground state, we may replace σ3 → −1.
Expanding in the coupling constants, we get a preliminary
form of the Hamiltonian:

Heff ¼ ℏω0
cc†cþ ℏω0

ma†aþ αcx̂c þ αmx̂m þ ℏgcmx̂cx̂m

þ ℏgScx̂2c þ ℏgSmx̂2m þ ℏgrpx̂2cx̂m: (8)

Here x̂c ≡ ðc† þ cÞ, x̂m ≡ ða† þ aÞ, and the coefficients are
αc ¼ −B1gc1=B, αm¼−B3gm=B, ℏgcm ¼ 2B3B1gc1gm=B3,
and

ℏgSm ¼ −
B2
1g

2
m

B3
; ℏgSc ¼ −

B2
3g

2
c1 þ B2B1gq1

B3
;

ℏgrp ¼ 2B3gm½B2B1gq1 þ ðB2
3 − 2B2

1Þg2c1�
B5

:

The first two terms in Eq. (8) are the Hamiltonians for the
bare oscillators, the next two are qubit-induced static forces
on them (neglected below), the term proportional to gcm is a
linear coupling between the oscillators, and the terms with
coefficients gSc and gSm are the cavity and mechanical Stark
shifts [25,32,40]. Finally, grp denotes an intermediate
expression of a radiation-pressure-type coupling. We diag-
onalize the individual oscillator Hamiltonians by the
Bogoliubov transformation, introducing c ¼ coshðθcÞdþ
sinhðθcÞd† and a ¼ coshðθmÞbþ sinhðθmÞb†, with θc=m ¼
−arctanh½ð2gSc=mÞ=ðℏω0

c=m þ 2gSc=mÞ�=2. This yields the

effective frequencies ωc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0
cðω0

c þ 4gScÞ
p

and ωm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0
mðω0

m þ 4gSmÞ
p

for the cavity and the vibrations,
respectively. The linear coupling gcm has little effect,
and is neglected. Including the Bogoliubov transformations
in the radiation-pressure coupling and assuming grpxm ≪
ωc yields a coupling between the effective mechanics
and cavity of the form ℏg0d†dðb† þ bÞ. Here g0 ¼
2grpðω0

c=ωcÞðω0
m=ωmÞ1=2 [41] is the radiation-pressure

coupling. These results then coincide with those of the
above Josephson inductance approach, except for
the renormalization due to mechanical Stark shift
ðω0

m=ωmÞ1=2 that is not captured by the latter.
Quantum nonlinearities.—The possibility of obtaining a

large Josephson-enhanced radiation-pressure coupling g0
implies a good prospect of reaching the “quantum regime”
of optomechanics, where g0 becomes at least of the order of
the cavity linewidth κ. In this regime it should be possible
to observe nonlinearities directly in the spectrum. The
frequency shift is proportional to g20=ωm [9], and is of the
order ∼g4cjg2m ∼ g2qjg

2
m. However, the qubit-mediated cou-

pling has another nonlinearity that gives rise to a frequency
shift in the mechanics and shows up at a lower order. It can
be understood as the change in the photon Stark shift
(which depends on the qubit level splitting) due to the
phonon-driven qubit Stark shift, and it implies a term of the
form c†ca†a. It is thus of the form of the cross-Kerr effect

between the two resonators. In the perturbation series with
respect to the couplings gcj, gqj and gm, such a term would
be of the order of g2cjg

2
m ∼ gqjg2m. In the rotating wave

approximation we get the term HCK ¼ ℏgCKd†db†b, with

gCK
g0

¼ RQ

Z0

ℏg0
EJ

½4 ~E2
cð8Es þ E2

JlÞ − E2
Jð4Es þ E2

JlÞ�
2π ~E2

cEJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ E2

Jl
Es

q ; (9)

where RQ ¼ h=ð2eÞ2 and Es ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ~E2

C þ E2
J

q
. The total

effective optomechanical Hamiltonian is thus

Heff ¼ ℏωcd†dþ ℏωmb†bþ ℏg0d†dðb† þ bÞ þHCK:

(10)

Whereas the response with sideband driving is dominated
by the large g0, the nonlinear frequency shifts are mainly
due to the term gCK [see the spectrum of Eq. (10) in
Ref. [38])]. For example, for 1=l ≈ EJ ≈ ~Ec, where the
radiation-pressure coupling g0 is appreciable, we get
gCK=g0 ≈ 5ℏg0RQ=ðEJZ0Þ. With g0 ≈ 5 MHz, EJ=ℏ≈
10 GHz, and Z0 ≈ RQ=100, we would hence get an
appreciable nonlinearity, gCK ≈ 0.25g0. Moreover, close
to ng0 ¼ 1=2, the radiation-pressure term vanishes whereas
the cross-Kerr term is finite. The Hamiltonian becomes
particularly simple, as the coupling commutes with the rest
of the Hamiltonian. As a result, the cavity frequency is
shifted by the number of quanta in the mechanical
resonator. Such a shift could be used for a direct detection
or creation of the Fock states in the mechanical resonator.
Effect of qubit-mediated dissipation.—Since the qubit

and the oscillators are generally hybridized up to a
significant amount, it is important to consider the effect
of qubit energy relaxation on that of the oscillators. This
can be analyzed with the Schrieffer-Wolff approach, but
now applying the transformation only to the qubit-oscillator
part of the setup [38]. We find that the rates for relaxation or
excitation of the mechanical resonator due to the qubit
dissipation satisfy

γrel=exc
γqrel=exc

¼ 2g2mB2
1

B4

P
jλ

2
jSjð�ωmÞP

jλ
2
jSjð�BÞ : (11)

Here γqrel;exc are the bare qubit relaxation/excitation rates, λj
is the coupling between the qubit and the bath oscillator j,
and SjðωÞ≡ R

dteiωth½b†jðtÞ þ bjðtÞ�½b†jð0Þ þ bjð0Þ�i is the
correlator of the qubit bath, chosen diagonal for conven-
ience. For an equilibrium bath at temperature Tb, these
satisfy a detailed balance relation γrel=γexc ¼ SjðωmÞ=
Sjð−ωmÞ ¼ exp½ℏωm=ðkBTbÞ�. Using the fluctuation-dis-
sipation relation with a frequency independent susceptibil-
ity for the bath correlator (i.e., quantum noise increasing
linearly with an increasing frequency), we would then get at
kBTb ≲ ℏωm the induced mechanical dissipation rate
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γrel ≈ g2mωmB2
1γ

q
rel=B

5, which is likely quite small in prac-
tical systems. However, in the case of charge qubits, one
should consider 1=f (flicker) noise, i.e., noise increasing
linearly with a decreasing frequency. In this case this
relation changes roughly to γrel ≈ g2mB2

1=ðB3ωmÞγq;rel,
which may already become relevant compared to the
intrinsic oscillator dissipation at large values of gm.
In the case of the cavity, we get similar effects on

relaxation and excitation rates by replacing gm with gc1 or
gc2, B1 by B3, and ωm by ωc. However, a more relevant
effect is likely due to pure cavity dephasing seen by a
flickering of the cavity frequency due to low-frequency
background charge fluctuations in the qubit. As analyzed in
Ref. [38], the rate for this process in the case EJ1 ¼ EJ2 and
ϕa ¼ 0 is γϕ ∼ g2q1γ

q
ϕ=B

2, where γqϕ is the pure dephasing
rate of the qubit. At the optimal operation point, this is of
the order of e4Z2

0γ
q
ϕ=ð16ℏ2Þ. For example, using γqϕ ¼

500 MHz [42] and Z0 ≈ 500 Ω, the corresponding added
cavity dephasing rate would be of the order of 0.5 MHz,
which is already larger than the intrinsic κ. Nevertheless, as
g0=γϕ ∝ Vg, this does not hinder reaching the limit of
strong optomechanical coupling.
Note that the above approach is valid as long as the

cavity photon number nc is not too large, such that phase
fluctuations ϕ0

ffiffiffiffiffi
nc

p
are small compared to 2π. Typical

values are ϕ0 ∼ 0.1;…; 0.5, depending on the cavity
impedance. At the upper end of the scale there are nonlinear
corrections to energy of 10% already at nc ∼ 1. In spite of
the low linear regime, because of the large g0, optome-
chanical phenomena are overwhelming already at photon
numbers nc ≈ 1.
In summary, we have presented a realizable scheme for

boosting the optomechanical radiation-pressure coupling
by several orders of magnitude. This gives the possibility of
approaching the previously elusive single-photon strong
coupling limit of optomechanics. Our predictions can be
readily tested in state-of-the-art circuit optomechanical
devices.
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