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Exclusive and kinematically complete high-statistics measurements of quasifree polarized ~np scattering
have been performed in the energy region of the narrow resonancelike structure d� with IðJPÞ ¼ 0ð3þÞ,
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M ≈ 2380 MeV, and Γ ≈ 70 MeV observed recently in the double-pionic fusion channels pn → dπ0π0

and pn → dπþπ−. The experiment was carried out with the WASA detector setup at COSY having a
polarized deuteron beam impinged on the hydrogen pellet target and utilizing the quasifree process
~dp → npþ pspectator. This allowed the np analyzing power, Ay, to be measured over a broad angular range.
The obtained Ay angular distributions deviate systematically from the current SAID SP07 NN partial-wave
solution. Incorporating the new Ay data into the SAID analysis produces a pole in the 3D3 − 3G3 waves in
support of the d� resonance hypothesis.

DOI: 10.1103/PhysRevLett.112.202301 PACS numbers: 13.75.Cs, 13.85.Dz, 14.20.Pt

Introduction.—Recent exclusive and kinematically com-
plete measurements of the basic double-pionic fusion
reactions pn → dπ0π0 and pn → dπþπ− revealed a narrow
resonancelike structure in the total cross section [1–3]
at a mass M ≈ 2380 MeV with a width of Γ ≈ 70 MeV,
which is consistent with a IðJPÞ ¼ 0ð3þÞ assignment [2].
Additional evidence for this structure has recently been
found in the pn → ppπ0π− reaction [4], where it was
denoted by d�, following the notation associated with the
so-called “inevitable dibaryon” [5].
If the observed resonancelike structure truly constitutes

an s-channel resonance in the neutron-proton system, then
it must be seen in the observables of elastic np scattering.
In Ref. [6], this resonance effect in np scattering has
been estimated. There it was shown that a noticeable
effect should appear in the analyzing power Ay, since this
observable is composed only of interference terms between
partial waves, thus being most sensitive to small changes in
the partial waves.
For the analyzing power, there exist data only below and

above the resonance region. These data sets, at Tn ¼
1.095 GeV (

ffiffiffi

s
p ¼ 2.36 GeV) [7,8] and Tn ¼ 1.27 GeV

(
ffiffiffi

s
p ¼ 2.43 GeV) [9,10], exhibit very similar angular
distributions. This gap in the existing measurements of
Ay has motivated the present Letter.
Experiment.—We have measured the energy dependence

of polarized ~np elastic scattering in the quasifree mode.
The experiment was carried out with the WASA detector
[11,12] at COSY (FZ Jülich), using a polarized deuteron
beam with an energy of Td ¼ 2.27 GeV impinging on the
WASA hydrogen pellet target. With this setup, a full energy
coverage of the conjectured resonance was obtained.
Note that we observe here the quasifree scattering process
~dp → npþ pspectator in inverse kinematics, which allows a
detection of the fast spectator proton in the forward detector
of WASA.
Since we deal here with events originating from channels

with large cross sections, the trigger was solely requesting
one hit in the first layer of the forward range hodoscope.
This hit could originate from either a charged particle or a
neutron. For the case of quasifree np scattering, this defines
three event classes, each having the spectator proton
appearing in the forward detector: (i) scattered proton
and scattered neutron both detected in the central detector,
covering the neutron angle region 31° < Θcm

n < 129°,

(ii) scattered proton detected in the forward detector,
with the scattered neutron being unmeasured, covering
132° < Θcm

n < 178°, and (iii) scattered proton detected in
the central detector, with the neutron being unmeasured,
covering the angular range 30° < Θcm

n < 41°.
Combining events, nearly the full range of neutron

scattering angles could be covered.
Since, through the use of the inverse kinematics, the

spectator proton is in the beam particle, the deuteron,
the spectator is very fast. This allows its detection in the
forward detector. By reconstruction of its kinetic energy
and its direction the full four momentum of the spectator
proton has been determined.
Similarly, the four momentum of the actively scattered

proton has been obtained from its track information in
either the forward or central detector (in the latter case, the
energy information was not retrieved).
Therefore, we have reconstructed the full event, includ-

ing the four momentum of the unmeasured neutron, and
even have one overconstraint in the subsequent kinematic
fit, when the neutron has not been measured explicitly.
In the case where the neutron has been detected by a hit

in the calorimeter [composed of 1012 CsI(Na) crystals] of
the central detector—associated with no hit in the preced-
ing plastic scintillator barrel, the directional information
of the scattered neutron has also been obtained. Therefore,
these events have undergone a kinematic fit with two
overconstraints.
In order to avoid a distortion of the beam polarization,

the magnetic field of the solenoid in the central detector
was switched off. The measurements were carried out with
cycles of the beam polarization “up”, “down”, and unpo-
larized (originating from the same polarized source), where
“up” and “down” refers to a horizontal scattering plane.
We verified that the beam, originating from the polarized
source, indeed was unpolarized when using it in its
“unpolarized”mode. This was accomplished by comparing
the azimuthal angular dependence of the scattered events to
that obtained through the use of a conventional unpolarized
source.
The magnitude of the beam polarization was determined

and monitored by dp elastic scattering, which was mea-
sured in parallel by detecting the scattered deuteron in the
forward detector as well as the associated scattered proton
in the central detector. The vector and tensor components of
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the deuteron beam were obtained by fitting our results, for
the vector and tensor analyzing power, to those obtained
previously at ANL [13] for Td ¼ 2.0 GeV and more
recently, at COSY-ANKE [14] at Td ¼ 2.27 GeV. As a
result, we obtained beam polarizations of Pz ¼ 0.67ð2Þ,
Pzz ¼ 0.65ð2Þ for “up” and Pz ¼ −0.45ð2Þ, Pzz ¼ 0.17ð2Þ
for “down”. The vector polarization of the beam, for
quasifree scattering, has been checked by quasifree pp
scattering. This was also measured in parallel by detecting
one of the protons in the forward detector and the other one
in the central detector, in addition, checking their angular
correlation for elastic events. Our results for the quasifree
pp analyzing power are in quantitative agreement both
with the EDDA measurements [15] of free pp scattering
and with the current SAID phase shift solution SP07 [16].
Since we have measurements with spin “up”, “down”,

and unpolarized, the vector analyzing power can be derived
in three different ways, by using each two of the three
spin orientations. All three methods should give identical
results. Differences may be taken as an estimate of
systematic uncertainties which are added quadratically to
the statistical ones to give the total uncertainties plotted in
Figs. 1, 2, and 4.
The momentum distribution of the observed spectator

proton, in the elastic np scattering process, agrees with
Monte Carlo simulations of the proton momentum distri-
bution in the deuteron filtered by the acceptance of the
WASA detector. In order to assure a quasifree process,
we omit events with spectator momenta larger than
0.16 GeV=c (in the deuteron rest system) as done in
previous work [2,3].
Results and Discussion.—Due to the Fermi motion

of the nucleons bound in the beam deuteron, the

measurement of the quasifree np scattering process
covers a range of energies in the np system. Meaningful
statistics could be collected for the range of np center-
of-mass energies 2.36 <

ffiffiffi

s
p

< 2.41 GeV corresponding to
Tn ¼ 1.10–1.20 GeV. First, we show the data (solid circles)
in Fig. 1 without selecting specific np center-of-mass
energies, i.e., without accounting for the spectator momen-
tum.Hence, this data set corresponds to theweightedaverage
over the covered interval of

ffiffiffi

s
p

. The solid line represents the
current SAID SP07 partial-wave solution [16], whereas
dashed and dotted lines give the results of revised SAID
partial-wave analyses, including the WASA dataset, as
describedbelow.Next,wehave taken themeasured spectator
four momentum into account and constructed the effective
ffiffiffi

s
p

for each event. We, thus, obtained angular distributions
sorted into six

ffiffiffi

s
p

bins, two of which are shown in Fig. 2 as
examples. All of our data deviate strikingly from the SP07
solution.
As a test, the present Ay data set was included in the

SAID database and the phenomenological approach used
in generating the NN partial-wave solution, SP07 [16], was
retained. Here, we first considered whether the existing
form was capable of describing these new Ay measure-
ments. One advantage of this approach is that the employed
Chew-Mandelstam K matrix can produce a pole in the

 [deg]*Θ
0 50 100 150

y
A

-0.5

0

0.5  = 2.377 GeVs

FIG. 1 (color online). Angular distribution of the np analyzing
power without consideration of the spectator momentum, corre-
sponding to a weighted average over the measured interval

ffiffiffi

s
p ¼

2.367–2.403 GeV (Tn ¼ 1.108–1.197 GeV) with a centroid at
ffiffiffi

s
p ¼ 2.377 GeV. The results from this Letter are shown as solid
circles with error bars including both statistical and systematic
uncertainties. The solid line represents the SAID SP07 phase shift
prediction [16], whereas the dashed (dotted) line gives the result
of the new weighted (unweighted) SAID partial-wave solution
(see text).
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FIG. 2 (color online). Notation as in Fig. 1, but for
ffiffiffi

s
p ¼ 2.367

(top) and 2.403 GeV (bottom) corresponding to Tn ¼ 1.11 and
1.20 GeV. The full symbols denote results from this Letter taking
into account the spectator four-momentum information. For the
meaning of the curves, see Fig. 1.
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complex energy plane without the explicit inclusion of a
K-matrix pole in the fit form. Neither the existence of a
pole nor the effected partial waves are predetermined. A
detailed overview of this formalism is given in Ref. [22].
The fitted Ay data were angular distributions at TLab

values of 1.108, 1.125, 1.135, 1.139, 1.156, 1.171, and
1.197 GeV. A first attempt to fit this dataset started from the
functional form of the current SP07 fit, and only varied the
associated free parameters. A χ2=datum of 1.8 was found
for all angular distributions, apart from the one at
1135 MeV. This was fairly consistent with the overall
χ2=datum given by the global fit of np elastic scattering
data to 2 GeV. However, the set at 1135 MeV contributed a
χ2=datum of about 25, having better statistics and a wider
angular coverage.
The fit parameters are expansion coefficients for the

K-matrix elements, which are smooth in energy, either
polynomials or basis elements having required left-hand
cuts, as described in Ref. [22]. Failing to reproduce the
1135 MeV set, the fit form was scanned to find partial
waves for which an added term in the K-matrix expansion
produced the most efficient reduction in χ2. The addition of
parameters and refitting resulted in a rapid variation of the
coupled 3D3 and 3G3 waves in the vicinity of the prob-
lematic 1135 MeV data set.
Some weighting was necessary in this fit, as only a few

angular points from the full set were determining the altered
energy dependence. The fit was repeated with different
weightings for the 1135 MeV Ay dataset. Having found a
better fit at 1135 MeV, a subsequent fit was produced
without weighting. These, qualitatively similar, results are
compared in the figures.
In Fig. 1, we plot the fit to the 1135 MeV angular

distribution from the SP07 prediction (not including the
new data), a weighted fit (errors decreased by a factor of 4),
and an unweighted fit including the present dataset and
using the new fit form.
Resulting changes in the 3D3-3G3 coupled waves are

displayed in Fig. 3. Here, the 3D3 wave obtained a typical
resonancelike shape, whereas the 3G3 wave changed less
dramatically. A search of the complex energy plane
revealed a pole in the coupled 3D3-3G3 wave. Other partial
waves did not change significantly over the energy range
spanned by the new data. Figure 3 also displays single-
energy solutions, generated from the old SP07 fit. These
discrete points are fits to data within narrow energy bins,
allowing amplitude variations to produce a best fit to data,
and are used to search for systematic deviations from the
global fit [22]. In the 3D3 partial-wave plot near 1135 MeV,
the new fit appears to agree with these single-energy results
much better than SP07.
The fit repeated with different weightings for the new Ay

data resulted in a variation of the pole position and could
be considered a minimal “error” on its value within the
present fit form. In the weighted fits, a pole was located at

ð2392–i37Þ MeV. The refit without weighting produced a
pole with ð2385-i39 MeVÞ MeV. Together with a speed-
plot determination we arrive at ð2380� 10-i40� 5Þ MeV
as our best estimate for the pole position.
From the decomposition of the np observables into

partial-wave amplitudes [23], it follows that the resonance
contribution in Ay is proportional to the associated
Legendre polynomial P1

3ðcosΘcm
n Þ. P1

3 is maximal at
Θcm

n ¼ 31.1° and minimal at 90°. Since at the latter angle
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FIG. 3 (color online). Changes to the (dimensionless) 3D3 (top)
and 3G3 (middle) partial waves including their mixing amplitude
ϵ3 (bottom). Solid (dotted) curves give the real (imaginary) part
of the partial-wave amplitudes from SP07, whereas the dashed
(dash-dotted) curves represent the new (weighted) solution.
Results from previous single-energy fits [16] are shown as solid
circles (real part) and inverted triangles (imaginary part). Vertical
arrows and horizontal bars indicate mass and width of the
resonance (estimated from the pole position).
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the differential cross section is at minimum and much lower
than at the former angle, the resonance effect in Ay becomes
maximal at Θcm

n ¼ 90°. To check this behavior, we have
inspected the energy dependence of Ay. In order to include
a reasonable number of previous measurements, we have
chosen the nearby angle Θcm

n ¼ 83°� 2° to be plotted in
Fig. 4. The data exhibit a pronounced resonancelike
behavior in accordance with the new partial-wave solu-
tion—in tendency even somewhat narrower.
Summary and Conclusions.—In conclusion, our exclu-

sive and kinematically complete measurement of quasifree
polarized ~np scattering provides detailed high-statistics
data for the analyzing power in the energy range, where
previously a narrow resonancelike structure with IðJPÞ ¼
0ð3þÞ was observed in the double-pionic fusion to deu-
terium. A partial-wave analysis including the new np
scattering data exhibits a resonance pole in the coupled
3D3-3G3 partial waves in accordance with the expectation
of a d� resonance structure. This structure has been
associated with a bound ΔΔ resonance, which could
contain a mixture of asymptotic ΔΔ [24] and six-quark,
hidden color, configurations [25]. Though less exotic
explanations cannot be excluded at the present stage,
dibaryon systems matching the mass and width of this
dibaryon candidate have been recently successfully gen-
erated within three-body [26] and quark model [27]
calculations. It should be noted that earlier dibaryon
candidates [22] were widely discounted due to their
appearance near the NΔ cut and the possibility of a
pseudoresonance mimicking their behavior. Such compli-
cations do not arise here—though we note the existence of
a nearby NN�ð1440Þ threshold. However, we are not aware
of any mechanism by which the very broad Roper reso-
nance could induce the narrow resonance structure con-
sidered here.

Finally, we note that the new partial-wave solution
improves also the description of total cross section data
as well as polarization observables obtained at ANKE [28]
in the resonance region. A full account of the new results
will be given in an extended forthcoming paper.
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