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We show that gauge invariant quantum link models, Abelian and non-Abelian, can be exactly described
in terms of tensor networks states. Quantum link models represent an ideal bridge between high-energy and
cold atom physics, as they can be used in cold atoms in optical lattices to study lattice gauge theories. In this
framework, we characterize the phase diagram of a ð1þ 1ÞD quantum link version of the Schwinger model
in an external classical background electric field: the quantum phase transition from a charge and parity
ordered phase with nonzero electric flux to a disordered one with a net zero electric flux configuration is
described by the Ising universality class.
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Lattice gauge theories (LGTs) play a key role in our
understanding of quantum many-body systems. In high
energy physics they provide a nonperturbative approach to
Abelian and non-Abelian continuum gauge models like
quantum electrodynamics (QED) or quantum chromody-
namics (QCD) [1,2]. In a condensed matter context, they
emerge as the low-energy description of some strongly
correlated quantum systems [3]. While Monte Carlo tech-
niques provide a well-established and highly successful
framework to simulate LGT for equilibrium phenomena,
the problem of real-time evolution and overcoming the
Fermion sign problem remain key challenges in this field
[4]. These questions can be addressed by both novel classical
and quantum simulation techniques. In a classical context,
quantum information theory has provided new insights into
the efficient description of quantummany-body systems, for
example in terms of tensor networks [5]. It is the purpose of
the present work to develop a description of a Hamiltonian
formulation of LGT in terms of tensor networks, with
emphasis on a natural implementation of gauge constraints
in the formalism. This is of interest not only from the
perspective of quantum many-body physics, in particular
for low dimensional (1D) systems, but also in the ongoing
quest to develop a quantum simulator for Abelian and
non-Abelian LGTs with cold atoms in optical lattices [6].
The techniques developed in the present Letter provide the
basis for an efficient and reliable calculation for phase
diagramsand real timedynamics (quenches) of simple lattice
gauge models, which will allow the verification of the first
generation of atomic quantum simulator of LGTs. We will
demonstrate this below for a ð1þ 1ÞD quantum link version
of the Schwinger model representing a model of QED.
The efficient simulation of quantum states by classical

methods and in particular parametrized by a set of tensor
networks has been a major effort in recent years [5,7]. On
one hand, tensor networks are an exact description of

ground states of paradigmatic Hamiltonians, e.g., 2D toric
code that is an Ising gauge theory [8,9]. On the other hand,
this framework is at the core of many successful sign-
problem free numerical tools [10,11] which have been
successfully applied to LGT related problems [12–17]. A
particular class of tensor networks, called the matrix
product state (MPS), is a common description for one
dimensional systems [18]. In this context, we show that the
MPS and tensor networks in higher dimensions are exact
descriptions of the Gauss law constraint of quantum link
models with Abelian and non-Abelian local symmetries
and we use them to describe different phases that can
appear in these models.
Quantum link models provide an ideal playground to

establish the connection between Abelian and non-Abelian
LGTs [19–21] and atomic lattice experiments [22]. In these
models of LGT the dynamical gauge fields are represented
by discrete degrees of freedom, e.g., spin operators, which
have a natural mapping to a Hubbard-type Hamiltonian
dynamics, which can be realized with cold atoms in optical
lattices [4,6,23–27].
The starting point for our discussion are LGTs in the

Hamiltonian formulation, where gauge degrees of freedom
Ux;xþ1 are defined on links of a lattice, and are coupled to
the matter ones ψx, defined on the vertices. In what follows,
we specialize to a Uð1Þ quantum link model, although
the theoretical analysis can be generalized to any gauge
symmetry group UðNÞ or SUðNÞ and space-time
dimension d (see Supplemental Material [28]). The
simplest nontrivial Hamiltonian is of the form, H ¼P

xψ
†
xUx;xþ1ψxþ1 þ H:c: which describes the coupling

between the “photon” field Ux;xþ1 and the electrons ψx.
In the quantum link formulation, the gauge degrees of
freedom are described by bilinear operators Ux;xþ1 ¼
cx;lc

†
xþ1;r recasting the interaction term in a four-body

Hubbard-type Hamiltonian. As we will see, this feature
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allows us to solve exactly, within the tensor network
representation, the constraints imposed by the local sym-
metries of this model.
Quantum link models have two independent local

symmetries:
(i) Gauge models are invariant under local symmetry

transformations. The local generators of these symmetries,
Gx, commute with the Hamiltonian, ½H;Gx� ¼ 0. Hence,
Gx are constant of motion or local conserved quantities,
which constrain the physical Hilbert space of the theory,
Gxjphysi ¼ 0, ∀ x, and the total Hilbert space splits in a
physical or gauge invariant subspace and a gauge variant or
unphysical subspace:Htotal ¼ Hphys⊕Hunphys. In QED, this
gauge condition is the usual Gauss’s law.
(ii) The quantum link formulation of the gauge degrees

of freedom introduces an additional constraint at every link,
that is, the conservation of the number of link particles,
c†x;lcx;l þ c†xþ1;rcxþ1;r ¼ Nx;xþ1. Hence, ½H;Nx;xþ1� ¼ 0
which introduce a second and independent local constraint
in the Hilbert space.
In the following, first, we present the theoretical char-

acterization of the local constraint (i) and (ii) in terms of
tensor networks. Second, we exploit this exact representa-
tion to implement a MPS-based approach which allows us
to characterize the full phase diagram of nontrivial gauge
invariant models. In particular, we study a quantum link
version of the Schwinger model identifying the different
phases and the universality class of the phase transition in
the presence of a background field.
The gauge invariant model.—Gauge theories in (1þ 1)

dimensions, and in particular the Schwinger model describ-
ing quantum electrodynamics in one space and one time
dimension [29–31], are nontrivial interacting models of
fermions and gauge fields. They provide a playground to
compute and understand many interesting phenomena with
surprising analogies with non-Abelian gauge theories in
higher dimensions as, to name a few, the confinement of
fermionic degrees of freedom and the appearance of a
massive boson in the spectrum, chiral symmetry breaking
through the axial anomaly, screening of external charges,
and a topological θ vacuum. In particular, we consider a
Uð1Þ gauge invariant model in (1þ 1) dimensions defined
by the Hamiltonian

H ¼ g2

2

X
x

½Ex;xþ1 − ð−1ÞxE0�2 þ μ
X
x

ð−1Þxψ†
xψx

− ϵ
X
x

ψ†
xUx;xþ1ψxþ1 þ H:c:; (1)

where ψx are spinless fermionic operators (matter fields
with a staggered mass term μ) living on the vertices of the
one-dimensional lattice, i.e., fψx;ψ

†
yg ¼ δx;y, usually

denoted as staggered fermions [32,33]. The vacuum of
the staggered fermions is given by a quantum state at half-
filling describing the Fermi-Dirac sea. The bosonic

operators Ex;xþ1 and Ux;xþ1 (electric and gauge field) live
on the links of the one-dimensional lattice, such that
½Ex;xþ1; Uy;yþ1� ¼ δx;yUx;xþ1. The coupling constant that
measures the strength of the electric energy term is from
now on set to one, i.e., g2=2 ¼ 1 while ϵ describes the
interaction between the matter and gauge fields. Finally, E0

corresponds to a classical background field which at
E0 ¼ 1

2
, the ground state at every link is twofold degenerate.

In the Wilson formulation, the lattice Schwinger model has
been numerically investigated using Monte Carlo tech-
niques [34,35], strong coupling expansion [36–38], and
MPS-based methods [13,16].
The quantum link [19–21,39] representation of the gauge

degrees of freedom is given by the SUð2Þ spin operators if
we identify Ex;xþ1 ≡ SðzÞx;xþ1 and Ux;xþ1 ≡ Sþx;xþ1. We use
Schwinger bosons (cx;l, cxþ1;r) to represent the spin algebra
such that Ux;xþ1 ≡ Sþx;xþ1 ¼ cx;lc

†
xþ1;r where we have

introduced a local set of states given by the occupation
numbers of bosons on the right (x, r), on the fermion (x)
and on the bosons on the left (x, l) as follows jnx;r; nx; nx;li.
The number of bosons per link Nx;xþ1 determines the
representation of the spin. In this work, we use the two
smallest integer and half-integer representations, i.e., S ¼ 1

2
for Nx;xþ1 ¼ 1 and S ¼ 1 for Nx;xþ1 ¼ 2.
With these definitions, the Hamiltonian is invariant

under local Uð1Þ symmetry transformations, and also it
is invariant under the discrete parity transformation P and
charge conjugation C (see Supplemental Material [28]).
Because of the Z2 discrete nature of these symmetries, they
can be broken in one-dimensional systems, allowing
critical points between a CP broken phase and an unbroken
one. The order parameter, the total electric flux, E ¼P

xhEx;xþ1i=L ¼ P
xhSðzÞx;xþ1i=L locates the transition. It

is zero in the disordered phase, nonzero in the ordered
phase, and changes the sign under the C or P symmetry,
i.e., PE ¼ CE ¼ −E.
Representative states of the different phases appear at the

strong coupling limit jμj ≫ jϵj where the Hamiltonian is
given by Hstr ¼ μ

P
xð−1Þxψ†

xψx (sketched in Fig. 1). For

--
+ +

+
--

+

Classical 
static charge:

Flux states:

-

Quantum 
dynamical charge:

+

FIG. 1 (color online). Ground state of the spin-1
2
quantum link

model in the limiting cases of jμj ≫ jϵj: in the upper (lower) panel
the fermion and the gauge field states are represented for μ ≪ ϵ
(μ ≫ ϵ) resulting inzero electric flux,E ¼ 0, andaC andP invariant
state (nonzero electric flux, E ≠ 0, C and P symmetry broken).
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μ ≫ ϵ, due to the gauge invariance, the Hamiltonian has
two possible ground states where the configuration of the
fermions is staggered (leftmost occupied site) and the
configuration of the bosons is also staggered with two
possible patterns. This phase is twofold degenerate, the
vacuum states break charge and parity symmetry and they
have nonzero electric flux. For μ ≪ ϵ, the vacuum is unique
and the staggered fermion has the rightmost site occupied.
This phase is C and P symmetric and it has a net zero
electric flux.
The “physical” subspace.—The number of bosons per

link Nx;xþ1 ¼ N is a local conserved quantity of the model
written in terms of Schwinger bosons. Because of gauge
invariance of the model, i.e., ½H;Gx� ¼ 0, the gauge
generator of the local Uð1Þ symmetry Gx is a second local
conserved quantity. The usual convention is to define the
“physical” subspace as the one that fulfills
Gxjphysicali ¼ 0, ∀ x [32]. In a quantum link model,
we can solve the gauge invariance or Gauss’s law locally,
that is, in terms of the Schwinger bosons, the constraint is
given by

c†x;rcx;r þ ψ†
xψx þ c†x;lcx;ljphys ¼ N −

ð−1Þx − 1

2
: (2)

Because of this feature, we can show that the gauge
invariant condition and the conserved number of bosons
per link can be written exactly in a MPS form. Indeed, the
Gauss projection can be done locally defining the local
Hilbert space fjsxig, while the link representation is
implemented by the product between the MPS matrices.
Recently, the action of global symmetries on MPS-like
wave function has been considered [40–42], what follows
can be seen as the counterpart of this for local (gauge)
symmetries.
For concreteness, we build the MPS for a case with S ¼ 1

2
on the link, but a similar discussion can be carried out for
any representation S, gauge symmetry group, Abelian or
non-Abelian, and space-time dimensions for the Quantum
link models (see Supplemental Material [28]).

For N ¼ 1 bosons per link, there are just three local
gauge invariant states jnx;r; nx; nx;li where the configura-
tions depend on the site: if it is odd (n2x−1;r þ n2x−1þ
n2x−1;l ¼ 2) or even (n2x;r þ n2x þ n2x;l ¼ 1). Being a spin-
1
2
the representation of the quantum link variable implies

that on every link, there is only one boson present, i.e.,
nx;l þ nxþ1;r ¼ 1. These two conditions are fulfilled if the
wave function has a general MPS form

jphysi ¼
X

s1;���;sx;���
aðs1; � � � ; sx; � � �Þ

× TrfA½s1� � � �A½sx� � � �gjs1; � � � ; sx; � � �i (3)

with

A½1� ¼
�
0 0

1 0

�
; A½2� ¼

�
1 0

0 0

�
; A½3� ¼

�
0 1

0 0

�
;

this MPS structure codifies both the gauge invariance and
the representation of the link variable; aðs1; � � � ; sx; � � �Þ is a
general amplitude, in principle nonlocal, that could also be
represented by a MPS.
MPS as a variational set.—To get the thermodynamical

properties of this model, we use an imaginary time
evolution algorithm with a MPS decomposition of the
ground state [43,44]. We show results for chains with up to
L ¼ 140 sites and bond dimension D up to 30.
We use open boundary conditions (see Fig. 1) fixing the

occupation of the first boson to one, hc†1;rc1;ri ¼ 1, and the
occupation of the last boson to zero, hc†L;lcL;li ¼ 0. With
these boundary conditions, we observe the transition
between both phases and we avoid the double degeneracy
of the CP broken phase.
The parameter that controls the transitions between the

different phases is the staggered mass μ of the fermions.
From the behavior of the order parameter E, we extract an
estimate of the critical point and of the critical exponents.
Because of the Z2 parity and charge conjugation sym-
metries, the critical point belongs to the Ising universality
class, as confirmed by the following numerical analysis.
Indeed, the finite size scaling hypothesis predicts the order

(a) (b) (c)

FIG. 2 (color online). (a) Electric flux E as a function of μ for L ¼ f40; 60; 80; 100; 120; 140g from top to bottom, S ¼ 1
2
and D ¼ 30.

(b) Finite size scaling of the electric flux E shown in panel (a), resulting in the critical point μc ¼ 0.655� 0.003 and critical exponents
ν ∼ 1 and β ∼ 1=8. (c) Uniform part of the entanglement entropy (green circles, first order approximation, i.e., ux;L ¼ 1

2
ðux;L þ uxþ1;LÞ,

and blue squares, third order approximation [48]). Inset: fit of ux;L as a function of the system size logL: a linear fit results in the central
charge c ¼ 0.49� 0.01.
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parameter E behavior close to a critical point μc as:
E ∼ L−β=νf½L1=νðμ − μcÞ�, with a scaling function fðxÞ
and critical exponents β and ν [17,45]. In Fig. 2, we show
how the behavior of the electric field density goes to zero in
the disordered phase, when μ ≪ ϵ, and to a finite value in
the ordered phase, when μ ≫ ϵ. We computed the critical
value of the staggered mass μc ¼ 0.655� 0.003 and found
critical exponents compatible with ν ∼ 1 and β ∼ 1

8
.

We use the entanglement entropy as an order parameter
to detect the phase transition [46]. The first thing to notice
is the oscillatory behavior of the entanglement entropy due
to the constraint on the number of bosons per link (see
Supplemental Material [28]). To decouple the uniform from
the oscillatory behavior, we define two auxiliary functions,
Sx;L ¼ ux;L þ ð−1Þxox;L. Conformal field theory analysis
proved that the uniform part of the entanglement entropy is
given by ux;L ¼ c=6 log ½ð2L=πÞ sin ðπx=LÞ� þ a where c
and a are constants to be fitted [47,48]. In the continuum
limit c corresponds to the central charge and determines the
universality class of the model. In our calculations, we
obtain c ¼ 0.49� 0.01, consistent with an Ising transition
(see Fig. 2 and Supplemental Material [28]). In conclusion,
the central charge is in very good agreement with an Ising
universality class at the phase transition.
Once we have characterized the behavior of the quantum

link model with S ¼ 1
2
representation on the links, we

compare it with the S ¼ 1 case (see Fig. 3 and
Supplemental Material [28]). The main difference in the
Hamiltonian of both models is that with the integer
representation, we apply a background electric field
E0 ¼ 1

2
. With this value of the background field, the

Hamiltonian is still C and P invariant, nonetheless the
vacuum can spontaneously break these symmetries as in
the S ¼ 1

2
link representation. We find the critical line (μ, ϵ)

fitted as μc ∼ μ0 þ μ1=2
ffiffiffi
ϵ

p þ μ1ϵ, with μ0 ¼ −0.04� 0.03,
μ1

2
¼ −0.20� 0.03 and μ1 ¼ −0.113� 0.005, belonging

again to the Ising universality class. Hence, the thermo-
dynamical properties and phase diagram of a quantum link
model with a half integer link representation are the same as
a quantum link model with integer representation in a
classical background field E0 ¼ 1

2
.

Observability in synthetic systems.—The ð1þ 1ÞD quan-
tum link model investigated in this Letter has been
discussed in relation to different atom, ion, and solid state
platforms [23–27]. The figure of merit to access the ground
state physics of the model is the order parameter E that can
be measured in the different platforms as described below.
Different implementation schemes using ultracold

atomic gases have introduced various ways of realizing
the Abelian gauge fields. In Ref. [24], the spin degrees of
freedom are realized in terms of Schwinger bosons in arrays
of double well potentials, Szx;xþ1 ¼ 1

2
ðnða=bÞxþ1 − nða=bÞx Þ. Here,

two species a and b are used for odd/even—even/odd links,
with respective number operators na=bx , and the spin
representation is given by the number of bosons in each
double well (i.e., one and two bosons per well for S ¼ 1

2
, 1

representations, respectively). In this case, the expectation
value of the order parameter can be measured in two
possible ways. The first one is, to employ the recently
developed quantum gas microscope [49,50] to perform in
situ imaging measurement of the bosonic particle distri-
bution. Since in real experiments local parity ð−1Þnα is
accessible, this provides an exact measure of the local value
of SðzÞx;xþ1 as long as S ≤ 3=2 is considered. Alternatively,
one can utilize band mapping techniques to measure the
difference between the number of bosons on each side of
the double well: this provides a global probe accessing
directly the order parameter E. Within this setup, for S > 1

2
,

the background electric field can be implemented by
applying a local offset λ

P
x evenn

ða;bÞ
x to the double wells,

created by, e.g., a small imbalance of the superlattice
potential. The corresponding E0 value reads E0 ¼ λ=g2.
Notice that, as g2 can be tuned to small values, E0 can reach
large values within the perturbative regime assumed
in Ref. [24].
Other implementation schemes realize spin degrees of

freedom by means of different internal states of an atom
sitting on the link sites [51,52]. In these cases, the global
order parameter can be accessed via a Stern-Gerlach–type
measurement, where one can selectively measure the global
occupation number of each of the spin states.
Conclusions.—We have shown that the MPS and tensor

networks in higher dimensions are exact descriptions of
Gauss’s law and the “physical” gauge invariant subspace of
quantum link models with Abelian and non-Abelian local
symmetries. Here we have characterized the thermodynam-
ical properties and phase diagram of a one-dimensional
Uð1Þ quantum link model, concluding that the model with
half-integer link representation has the same physical
properties as the model with integer link representation
in a classical background electric field E0 ¼ 1

2
. Moreover,

we have shown how the phase diagram can be probed in
various synthetic systems, and how the electric background
field can be engineered in cold atomic gases. This work
constitutes a relevant step towards a systematic under-
standing of lattice gauge theories in low-dimensional

(a) (b)

FIG. 3 (color online). (a) Electric flux E for S ¼ 1,
L ¼ f40; 60; 80; 100g, D ¼ 30 and ϵ ¼ 0.5 as a function of μ.
The estimated critical point is μc ¼ −0.2173� 0.0005. (b) Phase
diagram of the S ¼ 1 representation. The critical line is fitted via
μc ∼ μ0 þ μ1

2

ffiffiffi
ϵ

p þ μ1ϵ resulting in μ0 ¼ −0.04� 0.03, μ1
2
¼

−0.20� 0.03 and μ1 ¼ −0.113� 0.005.

PRL 112, 201601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
23 MAY 2014

201601-4



systems by employing numerical variational methods, and
which could serve as a ideal benchmark for atomic plat-
forms for either Abelian and non-Abelian lattice gauge
theories.
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