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We consider a universal relation between moment of inertia and quadrupole moment of arbitrarily fast
rotating neutron stars. Recent studies suggest that this relation breaks down for fast rotation. We find that it
is still universal among various suggested equations of state for constant values of certain dimensionless
parameters characterizing the magnitude of rotation. One of these parameters includes the neutron star
radius, leading to a new universal relation expressing the radius through the mass, frequency, and spin
parameter. This can become a powerful tool for radius measurements.
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Introduction.—General relativity is the cornerstone
for our understanding of gravity, one of the fundamental
forces of nature. Neutron stars (NSs) are among the best
laboratories for testing strong gravity and probing other
fundamental interactions (e.g., strong interactions). To date,
pulsar observations deliver some of the best tests of general
relativity and alternative theories of gravity. In the near
future, currently planned or approved observatories such as
SKA, ATHENA, LOFT, and NICER will improve these
tests by orders of magnitude. Additionally, inspiraling NS
binaries are the most likely sources for gravitational wave
(GW) detectors such as the Advanced LIGO, which will
start operation very soon. To exploit all these ambitious
astronomical projects to full extent, a careful and precise
modeling is required.
However, a catch of using NSs for gravity tests (see, e.g.,

Refs. [1,2] for reviews on gravity tests) is our current
ignorance about many aspects of their structure. While
there is increasing agreement on their very outer layers
among various groups, diverse theoretical models for their
inner structure are proposed. This is due to the quantum
chromodynamical interactions of the matter in regimes not
currently accessible by earth-based experiments. For this
reason, theoretical predictions are difficult. The issue above
raises the question of whether a NS can be used for
precision tests of gravity theory at all? For instance,
alternative theories of gravity can have experimental
signatures similar to finite size effects (internal structure).
This was explicitly shown in, e.g., Ref. [3], where the same
model star appeared with a different equation of state
(EOS) due to the modification of gravity. (This particular
modification seems to be undetectable by the discussed
universal relations, too [4].) The parameter estimation
(spins) through gravitational wave observations would
likely be spoiled considerably [5] for similar reasons.

A very important observation, which partly breaks this
degeneracy, was recently made in Refs. [5,6]. Relations
among various measurable quantities depending on the
inner structure of NSs were found to be universal among
many proposed NS models. This includes dimensionless
quantities related to the moment of inertia, spin-induced
quadrupole [7], and tidal-induced quadrupole [8–10] of the
NS. A limitation of the work in Refs. [5,6] is the use of the
slow rotation approximation, in which these quantities do
not depend on the magnitude of rotation, whereas this does
not hold true for rapid rotation. However, the slow rotation
approximation should be sufficiently accurate for many
near-future measurements.
One purpose of the present work is to study an extension

of the relation between the moment of inertia (Î) and the
spin-induced quadrupole (Q̂) beyond the slow rotation
approximation. A first study was done in Ref. [11], where
the Î-Q̂ relation was considered as a function of the
observationally important (but dimensionful) frequency
of rotation. Reference [11] explores at which frequency
the Î-Q̂ relation of Refs. [5,6] is modified. The univer-
sality among different NS models seems to be lost for
rapid rotation. Contrary to this expectation, we find that
when the rotation is characterized by a dimensionless
parameter, the universality still holds remarkably well. We
consider three different parameters, one based on the
angular momentum and two based on the rotation fre-
quency, where one is made dimensionless by the mass and
the other by the radius. As a consequence, the universal
relation containing the latter can further be used to infer
the radius of the NS, making it an effective tool in
analyzing astronomical data. We make this explicit by
formulating a universal fit of the radius in terms of the
mass, pulsar frequency, and spin. On a more theoretical
level, we show that even for certain polytropic EOSs the
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universality is still present for rapid rotation. This calls for
a fundamental explanation using analytic arguments.
The universal relations are important since they connect

several crucial astrophysical parameters. For example,
the frequency and the mass are observable in binary pulsar
systems using pulsar timing, and the spin (or moment
of inertia) might become measurable in the near future;
see, e.g., Ref. [12]. The latter two also leave an imprint
in the emitted gravitational waves and can be inferred
from future detection; see, e.g., Ref. [13]. The radius of a
NS is measured using photospheric radius expansion and
transiently accreting NSs in quiescence; see Ref. [14]
for a review. Both methods yield accuracies of about
10% employing different models for the data analysis;
see Ref. [15].
Besides the work in Ref. [11], the (in)validity of the

universal relations was investigated in other regimes, too.
Nonlinear and dynamical aspects of the tidal-induced
quadrupole were included in Ref. [16], where it was found
that the universal relations still hold true. In Ref. [17], the
effect of magnetic fields was included and it was shown that
the universal relations are broken for NSs with a large
rotation period (≳10 s) and strong magnetic fields
(≳1012 G) in a twisted-torus field configuration. As an
example, Ref. [17] speculates that breaking of the univer-
sality might just start to play a role for the slower rotating
NS in the double pulsar at the time of merger. However,
one should also admit that a rotation period of ≳10 s
implies that the dimensionful quadrupole will be very
small and likely irrelevant for most observations. Various
other universal properties of NSs were discussed before
[18–20] and after [21–23] the discovery of Yagi and
Yunes [5,6].
Rotating NS.—The spacetime of a rotating NS can be

written in the following form (in units where G ¼ c ¼ 1):

ds2 ¼ −e2νdt2 þ r2sin2θB2e−2νðdϕ − ωdtÞ2
þ e2ðξ−νÞðdr2 þ r2dθ2Þ; (1)

where ν, B, ω, and ξ depend only on r and θ.
The matter field describing the interior of the NS is

modeled by a perfect fluid of the form

Tμν ¼ ðρþ PÞuμuν þ Pgμν; (2)

where ρ is the energy density, P is the pressure, and uμ is
the 4-velocity. The model is specified once a particular
EOS is given as described in the next section.
To solve the field equations for the rotating NS, we use

the RNS code [24,25] (see also Ref. [26] for details on the
method and equations) including our own modification
implementing the multipole extraction described in
Ref. [27]. Note that the RNS code assumes rigid rotation;
see Refs. [24,25].

The metric functions, which allow us to define the
quadrupole, have the following asymptotic decay [28]

ν ¼ −
M
r
þ
�
B0M
3

þ ν2P2

�
1

r3
þOðrÞ−4;

B ¼ 1þ B0

r2
þOðrÞ−4; ω ¼ Ω

�
1þ 2I

r3

�
þOðrÞ−4;

(3)

where M is the mass of the star, P2 is a Legendre
polynomial, and ν2; B0; I are real constants, I ¼ J=Ω is
the moment of inertia, J being the angular momentum, and
Ω≡ 2πf is the angular frequency measured by a distant
observer (pulsar frequency). The quadrupole moment Q
[27] is then given by

Q ¼ −ν2 −
4

3

�
B0

M2
þ 1

4

�
: (4)

We plan a multipole extraction using source integrals as
envisaged in Ref. [29] in the future.
In order to investigate universal relations, we introduce

dimensionless quantities as

a ¼ J
M2

; Î ¼ I
M3

; Q̂ ¼ −
Q

M3a2
;

R̂ ¼ 2R
M

; f̂ ¼ 200Mf; ~f ¼ 20Rf; (5)

where R is the equatorial radius of the NS. The dimension-
less frequencies are such that f ¼ 1 kHz corresponds to
f̂ ≈ 1 ≈ ~f for M ¼ M⊙ or R ¼ 15 km, respectively.
Similarly, it holds R̂ ≈ R=km for M ¼ 1.4M⊙.
EOS.—The interior structure of a NS is modeled by an

EOS, giving relations between thermodynamical quantities,
such as the energy density ρ and the pressure P. Our lack of
knowledge of high-density nuclear matter is manifested
through a series of candidate EOSs. The dependence of the
interior structure of the NS on the respective EOS in turn
affects the exterior properties. For example, different EOSs
predict different relations between the mass and the radius,
and one might expect the same for the moment of inertia
and the quadrupole. Note that recently the radius was
measured sufficiently accurate with photospheric radius
expansion and quiescent low-mass x-ray binaries to yield
important constraints on the EOS in a wide range of NS
masses [15].
Our selection of realistic (tabulated) EOSs is APR [30],

AU (called AV14þ UVII in Ref. [31]), FPS [32], BSK20
[33–35], and SLy [36]. We also include polytropic
EOS P ¼ Kρ1þ1=n with polytropic indices n ¼ 0.5 and
n ¼ 0.6, which we denote by p1 and p2, respectively. Here,
K introduces an irrelevant scale, which cancels in the
dimensionless quantities.
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Universal Î-Q̂ relation for arbitrary rotation.—In the
present section, we aim to study the surprising ÎðQ̂Þ
universality beyond the slow rotation approximation. The
accuracy of the universality in that approximation is better
than 1% [5,6]. Figure 1 indicates a deviation from the slow
rotation case within this accuracy at about a ∼ 0.1. We will
see that this is indeed the threshold where a modification of
the universal relation is required.
We switched to a low order in the angular expansion in

the RNS code for 0.05 < a < 0.15 in Fig. 1, because the
higher orders produce a lot of numeric noise for small a.
The data points at a ¼ 0 were obtained in the slow rotation
approximation. We checked that we can use the default
order of the angular expansion for a > 0.1 for our desired
precision goal. This is an important aspect of our inves-
tigation, as we can smoothly connect to the result in
Refs. [5,6]. This is computationally challenging, since a
large grid size is required to stabilize the result.
In Ref. [11], a deviation from the slow-rotation result

greater than 1% showed up for frequencies between 160
and 480 Hz. (However, the deviations become weaker as
one approaches the maximum mass of the NS model.) The
natural next step is to explore if universality can be
extended to this regime and beyond. This requires a suitable
dimensionless parameter characterizing rotation, say α,
such that the relation ÎðQ̂; αÞ is approximately universal
among various EOSs. Indeed, we have defined several
natural candidates for such parameters in Eq. (5): a, f̂,
and ~f.
We extend the fit in Ref. [5] by a dependence on a or ~f as

log Î ≈
X
i;j

AijailogjQ̂ ≈
X
i;j

Bij
~filogjQ̂; (6)

where the coefficients are given in Table I. We used
around 30k data points for the regime 0.1 < a < 0.6,
0.2 < ~f < 1.2, 1.5 < Q̂ < 15. The deviation from these
fits is maximally ∼1% (independent of the EOS) and on
average ∼0.3%. Figure 2 shows the accuracy of the fit for
the selected EOS. At the time of writing this Letter, we
became aware of Ref. [22], where a similar fit with a as a
parameter was given but the discussion therein focused on
other universal relations.

Note that the polytropes were not included in the data for
the fit but are contained in Fig. 2. It is well known that
one can approximate the EOS of a NS with polytropes in
the range n ∼ 0.5…1; see, e.g., Ref. [18]. Typically, the
tabulated EOSs have an n value closer to 0.5 in the core,
and then it increases up to 1.0. Keeping this in mind,
we found that for n≲ 0.6 the polytrope is in perfect
agreement with our fits (Fig. 2), whereas the n ¼ 1
polytrope has greater deviation. This was observed in
the slow rotation approximation in Ref. [6], too.
Therefore, polytropes can be an ideal toy model to
investigate the underlying mechanism of the universality
analytically (see, e.g., Ref. [37]).
Subsequently, we discuss three choices of the

dimensionless parameters and their implications for the
universality of the Î-Q̂ relation.
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FIG. 1 (color online). Dependence of Î and Q̂ on the spin
parameter a for a 1.4M⊙ NS and different EOSs, from top to
bottom: BSK20, SLy, APR, FPS, AU.

TABLE I. Numerical coefficients for the fits of Eqs. (6) and (7).

i ¼ 0 1 2 3 4

Ai0 1.35 0.3541 −1.871 3.034 −1.860
Ai1 0.697 −1.435 8.385 −14.75 10.05
Ai2 −0.143 1.721 −9.343 18.14 −12.65
Ai3 0.0994 −0.8199 4.429 −8.782 6.100
Ai4 −0.0124 0.1348 −0.7355 1.460 −1.008
Bi0 1.35 0.1570 −0.3244 0.09399 0.02863
Bi1 0.697 −0.6386 1.509 −0.6932 0.05381
Bi2 −0.143 0.7711 −1.636 0.8434 −0.1210
Bi3 0.0994 −0.3594 0.7482 −0.3079 0.06019
Bi4 −0.0124 0.05788 −0.1140 0.05262 −0.03466
Ci0 3.081 −0.1108 0.3402
Ci1 0.6266 −0.01873 0.08047
Ci2 −0.009608 0.01382 −0.02374
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FIG. 2 (color). Percentage deviation of the Î-Q̂-a (top) and
Î-Q̂- ~f (down) fits with respect to data points, averaged over the a
(top) or ~f (down) direction. The deviation is almost constant in
the a or ~f direction.
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(1) a ¼ J=M2 as dimensionless parameter.—This
parameter is the natural choice and works best for the
proposed universality. For fixed a, the Î-Q̂ relation depends
on the EOS within less than 1%. However, it depends on a;
see Fig. 3. A simultaneous measurement of Î, Q̂, and a
must be consistent with these curves if general relativity
holds. This can be used to test strong-field gravity inde-
pendent of assumptions on the EOS.
(2) ~f ∝ Rf as dimensionless parameter.—Again, uni-

versality is found for constant ~f, see Fig. 4. In principle,
this can be used to (indirectly) constrain the radius R of
the NS once the dimensionless Î, Q̂, and the dimensionful
f (pulsar frequency) are known. This is an important
prospect of this Letter, since a direct measurement of R is
difficult. But the mass-radius relation contains invaluable
information about the EOS. Thus, although the Î-Q̂
relation is universal among EOSs, it can still be useful
to constrain them.
(3) f̂ ∝ Mf as dimensionless parameter.—This is not

independent from the parameter choice (1). From Eq. (5)
along with the definition of I, it can easily be seen that
Î ∝ a=f̂. Interestingly, the lines of constant f̂ look quite
different from Fig. 3. Instead, they qualitatively resemble
Fig. 1 in Ref. [11] but display good universality now.

Combination of relations.—The aforementioned rela-
tions can of course be combined. In particular, one can
solve relation (1) for Q̂ (i.e., use it to “measure” Q̂),
eliminate it from relation (2), and obtain an Î- ~f-f̂ relation.
This is useful, as Q is most difficult to measure. Next,
identities among the dimensionless quantities (a ∝ Î f̂,
~f ∝ R̂ f̂) allow a reformulation as an a-R̂-f̂ relation, which
we fit as

log R̂ ≈
X
i;j

Cijailogj
a

f̂
: (7)

The result is depicted in Fig. 5. The maximal deviation in
Fig. 5 is about 2% for our selection of EOS. However,
Eq. (7) does not fit very well to the data generated using the
polytropes discussed above. Hence, one must expect an
increasing deviation if further EOSs are included in the
future. Still, this relation should put tight constraints on R if
a, f, andM are known. We find that a reformulation of the
slow rotation fit given in Eq. (15) of Ref. [21] is in good

10.05.02.0 3.01.5 7.0

10

20

30

15

Q

I

10.05.02.0 3.01.5 7.0
0.0

0.1

0.2

0.3

0.4

Q

I f
it

I
Y

Y
I

Y
Y

a 0.1
a 0.2

a 0.3

a 0.4

a 0.5

a 0.6

FIG. 3 (color online). Dependence of the Î-Q̂ relation on the
spin parameter a (upper plot) and the relative deviation from the
slow rotation result IYY (lower plot). The curve for a ¼ 0.1 is
almost identical to IYY.
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agreement with our Eq. (7)—surprisingly even in the rapid
rotation regime. Since our fit uses the observable mass and
equatorial radius, this extrapolation of the slow-rotation
case is indeed astonishing. Other combinations of the
relations can be studied; e.g., one can try to formulate a
mass measurement (given a radius) or eliminate the
frequency (for pure GW observations).
The universal relation in Eq. (7) can either be used to

measure or constrain the radius or to improve the accuracy
of the radius measurement. If future x-ray observatories
increase the accuracy of the radius measurement suffi-
ciently, then this relation can be used to test fundamental
physics. This is what makes universal relations, its combi-
nations, and reformulations so powerful: One can use them
to infer unobservable properties or to test gravity if all
quantities entering the relations are observable. The diver-
sity of upcoming instruments (see Introduction) makes this
even more interesting.
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